research

Thermodynamics of Vortices in the Plane

Abstract

The thermodynamics of vortices in the critically coupled abelian Higgs model, defined on the plane, are investigated by placing NN vortices in a region of the plane with periodic boundary conditions: a torus. It is noted that the moduli space for NN vortices, which is the same as that of NN indistinguishable points on a torus, fibrates into a CPNβˆ’1CP_{N-1} bundle over the Jacobi manifold of the torus. The volume of the moduli space is a product of the area of the base of this bundle and the volume of the fibre. These two values are determined by considering two 2-surfaces in the bundle corresponding to a rigid motion of a vortex configuration, and a motion around a fixed centre of mass. The partition function for the vortices is proportional to the volume of the moduli space, and the equation of state for the vortices is P(Aβˆ’4Ο€N)=NTP(A-4\pi N)=NT in the thermodynamic limit, where PP is the pressure, AA the area of the region of the plane occupied by the vortices, and TT the temperature. There is no phase transition.Comment: 17 pages, DAMTP 93-3

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019