36 research outputs found

    Performance evaluation of road pavement green concrete : an application of advance decision-making approach before life cycle assessment

    Get PDF
    Rigid pavement structures are one of the costly components of the infrastructure development process. It consumes a huge quantity of ingredients necessary for concrete development. Hence, a newly introduced concept of circular economy in combination with waste management was introduced to solve this problem. In this study, three waste products (rice husk ash (RHA), wood sawdust (WSD), and processes waste tea (PWT)) was utilized to develop the concrete for rigid pavement structures by replacing the sand, i.e., a filler material at different percentages. During the testing procedure of compressive (CS), tensile (TS), and flexural strength (FS) properties, RHA and WSD at 5% replacement were found to be a good replacement of sand to develop required concrete. This study will help in the production of eco-friendly rigid pavement structures and a pathway of life cycle assessment in the future

    Structural Performance of GFRP Bars based High-Strength RC Columns: An Application of Advanced Decision-Making Mechanism for Experimental Profile Data

    Get PDF
    Several past studies have shown the use of glass fibre-reinforced polymer (GFRP) bars to alleviate the reinforced steel rusting issue in different concrete structures. However, the practise of GFRP bars in concrete columns has not yet achieved a sufficient confidence level due to the lack of a theoretical model found in the literature. The objective of the current study is to introduce a novel prediction model for the axial capability of concrete columns made with bars of GFRP. For this purpose, two different approaches, such as data envelopment analysis (DEA) and artificial neural networks (ANNs) modelling, are used on a collected dataset of 266 concrete column specimens made with GFRP bars from previous literature works. Eight parameters were used to predict the axial performance of GFRP-based RC columns. The proposed DEA and ANNs predictions demonstrated a good correlation with the testing dataset, having R2 values of 0.811 and 0.836, respectively. A comparative analysis of the DEA and ANNs models is undertaken, and it was found that the suggested models are capable of accurately forecasting the structural response of GFRP-made RC column structures. Then, a comprehensive parametric analysis of 266 GFRP-based columns was performed to study the effect of different materials and their geometrical shape.publishedVersio

    Axial Load-carrying Capacity of Steel Tubed Concrete Short Columns Confined with Advanced FRP Composites

    Get PDF
    Fiber Reinforced Polymers (FRPs) have wide applications in the field of concrete construction due to their superior performance over conventional materials. This research focuses on the structural behavior of steel tube FRP jacket–confined concrete (STFC) columns under axial concentric loading and proposes a new empirical equation for predicting the axial load-carrying capacity of STFC columns having thickness of FRP-fabric ranging from 0.09 mm to 5.9 mm. A large database of 700 FRP-confined concrete specimens is developed with the detailed information of critical parameters, i.e. elastic modulus of FRPs (Ef), compressive strength of unconfined concrete (fc’o), diameter of specimen (D), height of specimen (H), total thickness of FRPs (N.tf), and the ultimate strength of confined concrete (fc’c). After the preliminary evaluation of constructed database, a new empirical model is proposed for the prediction of axial compressive strength of FRP-confined specimens using general regression analysis by minimizing the error functions such as root mean squared error (RMSE) and coefficient of determination (R2). The proposed FRP-confinement strength model presented higher accuracy as compared with previously proposed models. Finally, an equation is proposed for the predictions of axial load carrying capacity of STFC columns. For the validation of proposed equation, an extensive parametric study is performed using the proposed nonlinear finite element model (FEM). The FEM is calibrated using the load-deflection results of STFC columns from literature. A close agreement was observed between the predictions of proposed finite element model and proposed capacity equation

    Mechanical Performance of Polymeric ARGF-Based Fly Ash-Concrete Composites: A Study for Eco-Friendly Circular Economy Application

    Get PDF
    At present, low tensile mechanical properties and a high carbon footprint are considered the chief drawbacks of plain cement concrete (PCC). At the same time, the combination of supplementary cementitious material (SCM) and reinforcement of fiber filaments is an innovative and eco-friendly approach to overcome the tensile and environmental drawbacks of plain cement concrete (PCC). The combined and individual effect of fly ash (FA) and Alkali resistance glass fiber (ARGF) with several contents on the mechanical characteristics of M20 grade plain cement concrete was investigated in this study. A total of 20 concrete mix proportions were prepared with numerous contents of FA (i.e., 0, 10, 20, 30 and 40%) and ARGF (i.e., 0, 0.5, 1 and 1.5%). The curing of these concrete specimens was carried out for 7 and 28 days. For the analysis of concrete mechanical characteristics, the following flexural, split tensile, and compressive strength tests were applied to these casted specimens. The outcomes reveal that the mechanical properties increase with the addition of fibers and decrease at 30 and 40% replacement of cement with fly ash. Replacement of cement at higher percentages (i.e., 30 and 40) negatively affects the mechanical properties of concrete. On the other hand, the addition of fibers positively enhanced the flexural and tensile strength of concrete mixes with and without FA in contrast to compressive strength. In the end, it was concluded that the combined addition of these two materials enhances the strength and toughness of plain cement concrete, supportive of the application of an eco-friendly circular economy. The relationship among the mechanical properties of fiber-reinforced concrete was successfully generated at each percentage of fly ash. The R-square for general relationships varied from (0.48–0.90) to (0.68–0.96) for each percentage of FA fiber reinforced concrete. Additionally, the accumulation of fibers effectively boosts the mechanical properties of all concrete mixes.publishedVersio

    Utilization of self-consolidated green material for sustainable development: An environment friendly waste materials application for circular economy

    Get PDF
    Self-Compacting Concrete (SCC) is a unique kind of concrete that tends to consolidate in terms of its weight. In this study, the prime target is to investigate the durability properties of SCC developed using eco-friendly economical waste binding materials as partial replacement to costly cement. This circular economy concept will not only help in the development of green concrete but will also help to improve the climatic condition by reducing the use and production of cement. An economical design methodology has been applied to produce environmentally friendly construction material. This research focuses on the application of Alum Sludge (AS) and Brick Dust (BD) in Self-Compacting Concrete (SCC). Both materials are waste materials containing binding properties. Performance of SCC developed using these two materials was tested considering mechanical properties of concrete using the destructive testing technique. Results showed that BD and AS can be utilized for up to 12% and 9% of replacement of cement, respectively, to achieve equal or higher compressive, tensile, and flexural strength. The application of BD and AS has demonstrated a subsequent improvement of SCC’s mechanical properties, i.e., compressive, tensile, and flexural strength. This study will help the production of composite green materials with the help of eco-friendly and economical waste materials for sustainable infrastructure development.publishedVersio

    Water Security and Environmental Impact Assessment: A Study for Developing Economies

    No full text
    Both ecosystems and human societies acknowledge the importance of water. The impact of human activities on both land and water has become more apparent due to various global changes. These include climate change, urbanization, socioeconomic development, and population growth. Although it is widely believed that water security is the key to sustainable development, studies on its evolution and various environmental factors are still in the early stages of development. This study aims to provide an overview of the concept. This concept aims to provide all people with safe water. It goes beyond merely providing adequate supplies to every person in the world, and it also aims to ensure healthy and productive lives. Despite the technological advancements being made in the water resource management industry, the lackadaisical approach to addressing the various challenges associated with water security continues to be a major issue globally. This study will provide an overview of the various facets of the water security concept and its evolution in developing countries due to the environmental changes that have occurred. It also explores the multiple sustainable methods that can be used to address these issues

    Sustainable Wastewater Treatment and Utilization: A Conceptual Innovative Recycling Solution System for Water Resource Recovery

    No full text
    The global demand for drinking water is increasing day by day. Different methods are used for desalination of water, which can help in the conservation of resources, such as seawater, highly saline, or treated water underground reservoirs. Polluted water can be treated by the utilization of different advanced techniques. In this study, wastewater mixed canal water has been taken into consideration for the utilization of humans and agriculture use as well. A two-stage conceptual methodology has been proposed to deal with the water conservation and utilization process. In the first phase, power has been produced using a Belgian vortex turbine, which is a safe, efficient, and eco-friendly technology working without disturbing waterways. The power produced by the vortex machine will be utilized to operate the water treatment plant to obtain clean water for utilization in the second phase. Since enough energy is produced, and its availability to the water head level base is a natural resource, this energy can be used to fulfill daily water requirements by maximizing the energy-driven treatment process as per WHO Guidelines. Water quality can be monitored at regular intervals, depending upon the selection and installation of a treatment plant. An increase in efficiency comes from nearly exponential patterns depending on water velocity and availability. This technique will not only help in the production of clean water but will also help in the conservation of groundwater resources and the efficient utilization of wastewater

    Advance Ensemble Flood Warning System: A Case Study for Nullah Lai

    No full text
    River flow forecasting is an essential tool to manage floods in the current era, especially for flash flooding scenarios in urban areas. This study focuses the flash flooding scenario in the Nullah Lai basin, which comprises the twin cities Islamabad and Rawalpindi. Steep slopes in the Margalla hills and Islamabad create high numbers of flash floods in the lower reaches of Rawalpindi, which are densely populated. When high-intensity rainfall occurs in the steep slopes of Margalla and Islamabad, high-volume floods with high velocity pour down, which instantaneously reaches the less-sloped Rawalpindi regions, which causes the raising of the water level in the stream, and flooding occurs. The section of the Nullah Lai Rawalpindi starting from the Qatarian bridge to the Gawalmandi bridge has always faced flash flooding over time. In the period of few hours, the water level reaches several fts in the nullah, which is why it is not possible to alert the people living on the banks in a timely manner, a problem that illuminates the need for a forecasting system at Nullah Lai. In the current research, the China Metrological Agency forecast center (CMA)’s ensemble forecast data have been utilized to achieve forecasts in the Nullah Lai. For this purpose, two initial objectives were set to achieve which basic needs are required process the data available in grib format from data centers. A digital model of the Nullah Lai was made using hydrology tools available in ArcGIS 10.3. A digital equation was obtained from gene expression modeling (GEP), which was later used to generate the ensemble stage forecast against the ensemble rainfall forecast. The results obtained show that the flash flooding phenomenon in Nullah Lai can, with some uncertainty, be predicted well in time. Using 3-days-ahead forecast data from CMA, the same floods were predicted 3 days before the event. This research also provides the procedure to use the ensemble forecast data in developing an automated model to generate the ensemble stage forecast for coming events. This study will help the administrative authorities better manage the upcoming floods and save lives and capital costs lost in the flash flooding phenomena which continuously happen in the basin of the Nullah Lai

    Strength Profile Pattern of FRP-Reinforced Concrete Structures: A Performance Analysis through Finite Element Analysis and Empirical Modeling Technique

    No full text
    Limited research work is available in the literature for the theoretical estimates of axial compressive strength of columns reinforced with fiber reinforced polymer (FRP) rebars. In the present work, an experimental database of 278 FRP-reinforced concrete (RC) compression members was established from the literature to recommend an empirical model that can accurately predict the axial strength (AS) of GFRP-RC specimens. An initial assessment of 13 different previously anticipated empirical models was executed to achieve a general form of the AS model. Finally, a new empirical equation for forecasting the AS of GFRP-RC short columns was proposed using the curve fitting and regression analysis technique. The performance of the proposed empirical model over the previous experimental database represented its higher accuracy as related to that of other models. For the further justification of the anticipated model, a numerical model of GFRP-RC columns was simulated using ABAQUS and a wide parametric study of 600 GFRP-RC samples was executed to generate a numerical database and investigate the influence of various parameters using numerical and empirical models. The comparison between theoretical and numerical predictions with R2 = 0.77 indicted that the anticipated empirical model is accurate enough to apprehend the AS of FRP-RC specimens

    Utilization of Polymer Concrete Composites for a Circular Economy: A Comparative Review for Assessment of Recycling and Waste Utilization

    Get PDF
    Polymer composites have been identified as the most innovative and selective materials known in the 21st century. Presently, polymer concrete composites (PCC) made from industrial or agricultural waste are becoming more popular as the demand for high-strength concrete for various applications is increasing. Polymer concrete composites not only provide high strength properties but also provide specific characteristics, such as high durability, decreased drying shrinkage, reduced permeability, and chemical or heat resistance. This paper provides a detailed review of the utilization of polymer composites in the construction industry based on the circular economy model. This paper provides an updated and detailed report on the effects of polymer composites in concrete as supplementary cementitious materials and a comprehensive analysis of the existing literature on their utilization and the production of polymer composites. A detailed review of a variety of polymers, their qualities, performance, and classification, and various polymer composite production methods is given to select the best polymer composite materials for specific applications. PCCs have become a promising alternative for the reuse of waste materials due to their exceptional performance. Based on the findings of the studies evaluated, it can be concluded that more research is needed to provide a foundation for a regulatory structure for the acceptance of polymer composites.publishedVersio
    corecore