300 research outputs found

    Domination integrity of total graphs

    Get PDF
    The domination integrity of a simple connected graph G is a measure of vulnerability of a graph. Here we determine the domination integrity of total graphs of path Pn, cycle Cn and star K1,n.Publisher's Versio

    The dChip survival analysis module for microarray data

    Get PDF
    International audienceBACKGROUND: Genome-wide expression signatures are emerging as potential marker for overall survival and disease recurrence risk as evidenced by recent commercialization of gene expression based biomarkers in breast cancer. Similar predictions have recently been carried out using genome-wide copy number alterations and microRNAs. Existing software packages for microarray data analysis provide functions to define expression-based survival gene signatures. However, there is no software that can perform survival analysis using SNP array data or draw survival curves interactively for expression-based sample clusters. RESULTS: We have developed the survival analysis module in the dChip software that performs survival analysis across the genome for gene expression and copy number microarray data. Built on the current dChip software's microarray analysis functions such as chromosome display and clustering, the new survival functions include interactive exploring of Kaplan-Meier (K-M) plots using expression or copy number data, computing survival p-values from the log-rank test and Cox models, and using permutation to identify significant chromosome regions associated with survival. CONCLUSIONS: The dChip survival module provides user-friendly way to perform survival analysis and visualize the results in the context of genes and cytobands. It requires no coding expertise and only minimal learning curve for thousands of existing dChip users. The implementation in Visual C++ also enables fast computation. The software and demonstration data are freely available at http://dchip-surv.chenglilab.org

    Characterization and biological evaluation of some novel pyrazolo[3’,4’:4,5]thieno[2,3-d]pyrimidin-8-ones synthesized via the Gewald reaction

    Get PDF
    The synthesis of substituted pyrazolo[3’,4’:4,5]thieno[2,3-d]pyrimidin-8-ones (IIIa–j) from 5-amino-3-methyl-1H-thieno[3,2-c]pyrazole-6-carbonitrile (II) is described. The key compound II was synthesized from (5-methyl--2,4-dihydro-3H-pyrazol-3-ylidene)malononitrile I via the Gewald reaction. The synthesis of the title compounds IIIa–j was accomplished by condensation of II with different aromatic aldehydes. The newly synthesized heterocyles were characterized by elemental analysis, IR, 1H-NMR, 13C-NMR and mass spectroscopic investigation. All the newly synthesized compounds were evaluated for antimicrobial activity against a variety of bacterial strains

    Minimal hepatic encephalopathy: consensus statement of a working party of the Indian National Association for study of the liver

    Get PDF
    Hepatic encephalopathy (HE) is a major complication that develops in some form and at some stage in a majority of patients with liver cirrhosis. Overt HE occurs in approximately 30-45% of cirrhotic patients. Minimal HE (MHE), the mildest form of HE, is characterized by subtle motor and cognitive deficits and impairs health-related quality of life. The Indian National Association for Study of the Liver (INASL) set up a Working Party on MHE in 2008 with a mandate to develop consensus guidelines on various aspects of MHE relevant to clinical practice. Questions related to the definition of MHE, its prevalence, diagnosis, clinical characteristics, pathogenesis, natural history and treatment were addressed by the members of the Working Party

    Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma.

    Get PDF
    Histone methyltransferase KMT2D harbors frequent loss-of-function somatic point mutations in several tumor types, including melanoma. Here, we identify KMT2D as a potent tumor suppressor in melanoma through an in vivo epigenome-focused pooled RNAi screen and confirm the finding by using a genetically engineered mouse model (GEMM) based on conditional and melanocyte-specific deletion of KMT2D. KMT2D-deficient tumors show substantial reprogramming of key metabolic pathways, including glycolysis. KMT2D deficiency aberrantly upregulates glycolysis enzymes, intermediate metabolites, and glucose consumption rates. Mechanistically, KMT2D loss causes genome-wide reduction of H3K4me1-marked active enhancer chromatin states. Enhancer loss and subsequent repression of IGFBP5 activates IGF1R-AKT to increase glycolysis in KMT2D-deficient cells. Pharmacological inhibition of glycolysis and insulin growth factor (IGF) signaling reduce proliferation and tumorigenesis preferentially in KMT2D-deficient cells. We conclude that KMT2D loss promotes tumorigenesis by facilitating an increased use of the glycolysis pathway for enhanced biomass needs via enhancer reprogramming, thus presenting an opportunity for therapeutic intervention through glycolysis or IGF pathway inhibitors
    corecore