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DOMINATION INTEGRITY OF TOTAL GRAPHS

S. K. VAIDYA1, N. H. SHAH2 §

Abstract. The domination integrity of a simple connected graph G is a measure of
vulnerability of a graph. Here we determine the domination integrity of total graphs of
path Pn, cycle Cn and star K1,n.
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1. Introduction

We begin with simple, finite, connected and undirected graph G with vertex set V (G)
and edge set E(G). For any undefined terminology and notation related to the concept
of domination we refer to Haynes et al. [7] while for the fundamental concepts in graph
theory we rely upon Harary [6]. In the remaining portion of this section we will give brief
summary of definitions and information related to the present work.

The vulnerability of network have been studied in various contexts including road
transportation system, information security, structural engineering and communication
network. A graph structure is vulnerable if ‘any small damage produces large conse-
quences’. In a communication network, the vulnerability measures the resistance of the
network to disruption of operation after the failure of certain stations (junctions) or com-
munication links (connections). In the theory of graphs, the vulnerability implies a lack
of resistance(weakness) of graph network arising from deletion of vertices or edges or
both. Communication networks must be so designed that they do not easily get dis-
rupted under external attack and even if they get disturbed then they should be easily
reconstructible. Many graph theoretic parameters have been introduced to describe the
vulnerability of communication networks including binding number, rate of disruption,
toughness, neighbor-connectivity, integrity, mean integrity, edge-connectivity and tenac-
ity. In the analysis of the vulnerable communication network two quantities are playing
vital role, namely (i) the number of elements that are not functioning (ii) the size of the
largest remaining (survived) sub network within which mutual communication can still
occur. In adverse relationship it is desirable that an opponent’s network would be such
that the above referred two quantities can be made simultaneously small. Here the first
parameter provides an information about nodes which can be targeted for more disruption
while the later gives the impact of damage after disruption. To estimate these quantities
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Barefoot et al. [2] have introduced the concept of integrity, which is defined as follows.

Definition 1.1 The integrity of a graph G is denoted by I(G) and defined by I(G) =
min{| S | +m(G−S) : S ⊂ V (G)} where m(G−S) is the order of a maximum component
of G− S.

Many results are reported in a survey article on integrity by Bagga et al. [1]. Some
general results on the interrelations between integrity and other graph parameters are
investigated by Goddard and Swart [5] while Mamut and Vumar [8] have determined the
integrity of middle graph of some graphs. It is also observed that bigger the integrity of
network, more reliable functionality of the network after any disruption caused by non-
functional devices (elements). The connectivity is useful to identify local weaknesses in
some respect while integrity gives brief account of vulnerability of the graph network.

Definition 1.2 A subset S of V (G) is called dominating set if for every v ∈ V − S, there
exist a u ∈ S such that v is adjacent to u.

Definition 1.3 The minimum cardinality of a minimal dominating set in G is called the
domination number of G denoted as γ(G) and the corresponding minimal dominating set
is called a γ-set of G.

The theory of domination plays vital role in determining decision making bodies of
minimum strength or weakness of a network when certain part of it is paralysed. In the
case of disruption of a network, the damage will be more when vital node are under siege.
This motivated the study of domination integrity when the sets of nodes disturbed are
dominating sets. Sundareswaran and Swaminathan [9] have introduced the concept of
domination integrity of a graph as a new measure of vulnerability which is defined as
follows.

Definition 1.4 The domination integrity of a connected graph G denoted by DI(G) and
defined as DI(G) = min{| X | +m(G−X) : X is a dominating set} where m(G−X) is
the order of a maximum component of G−X.

Sundareswaran and Swaminathan [9] have investigated domination integrity of some
standard graphs. In the same paper they have investigated domination integrity of Bi-
nomial trees and Complete k-ary trees while in [10] they have investigated domination
integrity of middle graph of some standard graphs. Same authors in [11] have investigated
the domination integrity of powers of cycles while in [12] they have discussed domination
integrity of trees. Vaidya and Kothari [13, 14] have discussed domination integrity in the
context of some graph operations and also investigated domination integrity of splitting
graph of path Pn and cycle Cn while Vaidya and Shah [15] have investigated domination
integrity of shadow graphs of Pn, Cn, Km,n and Bn,n.

Generally following types of problems are generally considered in the field of domina-
tion.
1. Introduce new type of domination parameters by combining domination with other
graph theoretical property.
2. To find upper or lower bound of any particular dominating parameter with respect to
graph parameters like δ(G),△ (G), α0(G), β0(G), κ(G), ω(G), diam(G) etc.
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3. To obtain exact domination number for some graphs or graph families.
4. Characterize the graph or graph family which satisfies certain dominating parameter.
5. Study of algorithmic and complexity results for particular dominating parameter.
6. How a particular dominating parameter is affected under various graph operations.

The problems of first five types are largely discussed while the problems of sixth type
are not so often but they are of great importance. The present work is aimed to discuss the
problems of sixth kind in the context of domination integrity. We investigate domination
integrity for total graphs of Pn, Cn and K1,n.

The concept of total graph T (G) of graph G was introduced by Behzad [3] which is
defined as follows:

Definition 1.5 The total graph T (G) of G is the graph whose vertex set is V (G)∪E(G)
and two vertices are adjacent whenever they are either adjacent or incident in G.

It is obvious that T (G) always contains both G and its line graph L(G) as a induced
subgraphs. Also T (G) is the largest graph formed by adjacent and incidence relation be-
tween graph elements.

Dündar and Aytaç [4] discussed the integrity of total graphs via certain graph param-
eters while we discuss the domination integrity of total graphs.

Proposition 1.6 [4]

(i) γ (T (Pn)) =


|V (T (Pn)) |

5
; if |V (T (Pn)) | ≡ 0(mod 5)

⌊
|V (T (Pn)) |

5

⌋
+ 1; otherwise

(ii) γ (T (Cn)) =


|V (T (Cn)) |

5
; if |V (T (Cn)) | ≡ 0(mod 5)

⌊
|V (T (Cn)) |

5

⌋
+ 1; otherwise

2. Main Results

Proposition 2.1. [9]

(i) DI (Pn) =


⌈n
2

⌉
+ 1; n = 2, 3, 4, 5

⌈n
3

⌉
+ 2; n ≥ 6

(ii) DI (Cn) =

{
3; n = 3, 4⌈n

3

⌉
+ 2; n ≥ 5

(iii) DI (Km,n) = min{m,n}+ 1

Theorem 2.2. DI (T (Pn)) = n+ 1 for n = 2 to 7.

Proof. Let v1, v2, . . . , vn be the vertices of path Pn and u1, u2, . . . , un−1 be the added
vertices corresponding to edges e1, e2, . . . , en−1 to obtain T (Pn). Let G be the graph
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T (Pn). Then |V (G)| = 2n− 1 and |E(T (G)| = 4n− 5.
To prove this result we consider following six cases.
Case 1: n = 2
Clearly T (P2) is C3 so DI(T (P2)) = 3 from proposition 2.1.
Case 2: n = 3
Consider S = {v2, u2} then S is dominating set of T (P3) and m(G−S) = 2, so |S|+m(G−
S) = 4. There does not exist any dominating set S1 of T (P3) such that |S1|+m(G−S1) <
|S|+m(G− S). Hence, DI(T (P3)) = 4.
Case 3: n = 4
Consider S = {v2, u2, u4} then S is dominating set of T (P4) and m(G − S) = 2, so
|S|+m(G−S) = 5. If S1 is any dominating set of T (P4) with |S1| ≤ 2 then m(G−S1) = 5
so |S1| + m(G − S1) > 5. If we consider any dominating set S2 of T (P4) such that
m(G− S2) = 1 then |S2| ≥ 4 hence, |S2|+m(G− S2) ≥ 5. Therefore, DI(T (P4)) = 5.
Case 4: n = 5
Consider S = {v2, u2, v4, u4} then S is dominating set of T (P5) and m(G − S) = 2, so
|S|+m(G−S) = 6. If S1 is any dominating set of T (P5) with |S1| = 3 thenm(G−S1) ≥ 4 so
|S1|+m(G−S1) > 6. If S2 is any dominating set of T (P5) with |S2| = 2 thenm(G−S2) = 7
so |S2| + m(G − S2) = 9 > 6. If we consider any dominating set S3 of T (P5) such that
m(G− S3) = 1 then |S3| ≥ 6 hence, |S3|+m(G− S3) ≥ 7. Therefore, DI(T (P5)) = 6.
Case 5: n = 6
Consider S = {v2, u2, u4, v5} then S is dominating set of T (P6) and m(G − S) = 3, so
|S| + m(G − S) = 7. If S1 is any dominating set of T (P6) with m(G − S1) ≥ 4 then
|S1|+m(G− S1) = 8 > 7. If S2 is any dominating set of T (P6) with |S2| = 2 then clearly
|S2|+m(G− S2) > 7. Therefore, DI(T (P6)) = 7.
Case 6: n = 7
Consider S = {v2, u2, u4, v5, v7} then S is dominating set of T (P7) and m(G − S) = 3,
so |S| + m(G − S) = 8. If S1 is any dominating set of T (P7) with m(G − S1) ≥ 4 then
|S1|+m(G− S1) = 9 > 8. If S2 is any dominating set of T (P7) with |S2| = 2 then clearly
|S2|+m(G− S2) > 8. Therefore, DI(T (P7)) = 8.
Hence DI (T (Pn)) = n+ 1 for n = 2 to 7.

�
Theorem 2.3. For n ≥ 8,

DI (T (Pn)) =


2n
3 + 4; if n ≡ 0(mod 3)⌈
2n
3

⌉
+ 4; if n ≡ 1(mod 3)⌊

2n
3

⌋
+ 4; if n ≡ 2(mod 3)

Proof. Let v1, v2, . . . , vn be the vertices of path Pn and u1, u2, . . . , un−1 be the added
vertices corresponding to edges e1, e2, . . . , en−1 to obtain T (Pn). Let G be the graph
T (Pn).
Proposition 1.6 gives the value of γ (T (Pn)), here we provide D(γ − set) for T (Pn) for
different possibilities of n as below:

• If n ≡ 0(mod 5) (i.e. n = 5k), consider D = {v2+5i, u4+5i|0 ≤ i < k}.
• If n ≡ 1(mod 5) (i.e. n = 5k + 1) or n ≡ 2(mod 5) (i.e. n = 5k + 2), consider
D = {v2+5i, u4+5i, vn|0 ≤ i < k}.

• If n ≡ 3(mod 5) (i.e. n = 5k + 3), consider D = {v2+5i, u4+5j |0 ≤ i ≤ k, 0 ≤ j <
k}.
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• If n ≡ 4(mod 5) (i.e. n = 5k + 4), consider D = {v2+5i, u4+5j , vn|0 ≤ i ≤ k, 0 ≤
j < k}.

Hence, γ (T (Pn)) =


2n− 1

5
; if 2n− 1 ≡ 0(mod 5)

⌊
2n− 1

5

⌋
+ 1; otherwise

Clearly, DI (T (Pn)) ≤ |D|+m(G−D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (i)

Now we define another subset S of V (T (Pn)) as below:

• If n ≡ 0(mod 3) (i.e. n = 3k), consider S = {v2+3i, u2+3i|0 ≤ i < k} and |S| = 2k.
• If n ≡ 1(mod 3) (i.e. n = 3k + 1) or n ≡ 2(mod 3) (i.e. n = 3k + 2), consider
S = {v2+3i, u2+3i, vn|0 ≤ i < k} and |S| = 2k + 1.

In all the above cases S is a dominating set for G as u1+3t, u3+3t ∈ N(u2+3t) and
v1+3t, v3+3t ∈ N(v2+3t) for t ∈ N ∪ {0} moreover m(G− S) = 4.
In order to compare the values of parameters |D|+m(G−D) and |S|+m(G− S) and to
check the minimality of |S| +m(G − S), we prepare the Table 1 for random values of n
between 8 to 20.

Table 1

1 2 3 4 5 6 7 8
n 2n− 1 |D| m(G−D) |D|+m(G−D) |S| m(G− S) |S|+m(G− S)
8 15 3 12 15 5 4 9
9 17 4 13 17 6 4 10
10 19 4 15 19 7 4 11
11 21 5 16 21 7 4 11
16 31 7 24 31 11 4 15
20 39 8 31 39 13 4 17

From columns 5 and 8 of Table 1, we can observe that for D (γ− set) and dominating set
S,
|S|+m(G− S) < |D|+m(G−D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ii)
We have verified that the above relation (ii) is valid even for larger values of n.
From (i) and (ii), we have,
DI (T (Pn)) ≤ |S|+m(G− S) < |D|+m(G−D).
Hence, DI (T (Pn)) ≤ |S|+m(G− S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (iii)
We claim that DI (T (Pn)) = |S|+m(G− S).
If we consider any dominating set S1 of G such that, |D| ≤ |S1| < |S| then due to con-
struction of T (Pn), it generates large value of m(G− S1) such that,
|S|+m(G− S) < |S1|+m(G− S1).
Let S2 be dominating set of G with minimal cardinality such that m(G − S2) = 3 then,
|S|+m(G− S) ≤ |S2|+m(G− S2), for 8 ≤ n ≤ 13 and
|S|+m(G− S) < |S2|+m(G− S2), for n ≥ 14.
Moreover if S3 is any dominating set of G with m(G − S3) = 2 or m(G − S3) = 1 then
clearly,
|S|+m(G− S) < |S3|+m(G− S3)
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From above discussion we can say that among all dominating sets of G, S is such that
|S|+m(G− S) is minimum.
Therefore,
|S|+m(G− S) = min{| X | +m(G−X)|X is a dominating set}

= DI (T (Pn)).
Hence, for n ≥ 8

DI (T (Pn)) =


2n
3 + 4; if n ≡ 0(mod 3)⌈
2n
3

⌉
+ 4; if n ≡ 1(mod 3)⌊

2n
3

⌋
+ 4; if n ≡ 2(mod 3)

�

Corollary 2.4. DI (T (Pn))−DI (Pn) =



1; n = 2, 3
2; n = 4, 5
3; n = 6, 7

n
3 + 2; n ≥ 8 & n ≡ 0(mod 3)⌊
n
3

⌋
+ 2; n ≥ 8 & n ≡ 1(mod 3) or n ≡ 2(mod 3)

Proof. In view of Proposition 2.1, Theorem 2.2 and Theorem 2.3 the result is obvious. �

Theorem 2.5. DI (T (Cn)) =



6; n = 3, 4
7; n = 5
8; n = 6
9; n = 7
10; n = 8, 9
11; n = 10

Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn and u1, u2, . . . , un be the added vertices
corresponding to edges e1, e2, . . . , en to obtain T (Cn). Let G be the graph T (Cn). Then
|V (G)| = 2n and |E(T (G)| = 4n.
To prove this result we consider following two cases.
Case 1: n = 3, 4

For n = 3, consider S = {v2, v3, u3} then m(G − S) = 3. There does not exist any
dominating set S1 of T (C3) such that |S1| + m(G − S1) < |S| + m(G − S). Hence,
DI(T (C3)) = 6.
For n = 4, consider S = {v2, v4, u2, u4} then m(G − S) = 2. There does not exist any
dominating set S1 of T (C4) such that |S1| + m(G − S1) < |S| + m(G − S). Hence,
DI(T (C4)) = 6.
Case 2: n = 5 to 10

To explain this case we prepare the following Table 2.
The Table 2 gives dominating set S and corresponding values of m(G−S) for n = 5 to 10.
It can be observed that among all dominating sets of G, above given S gives the minimum
value of |S|+m(G− S).
Hence, for n = 3 to 10
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Table 2

n S |S| m(G− S) |S|+m(G− S)
5 {v2, u2, u4, v5} 4 3 7
6 {v2, u2, v5, u5} 4 4 8
7 {v2, u2, u4, v5, u7, v7} 6 3 9
8 {v2, u2, u4, v5, u7, v7, v8} 7 3 10

{v2, u2, v5, u5, v8, u8} 6 4 10
9 {v2, u2, v5, u5, v8, u8} 6 4 10
10 {v2, u2, u4, v5, u7, v7, u9, v10} 8 3 11

DI (T (Cn)) =



6; n = 3, 4
7; n = 5
8; n = 6
9; n = 7
10; n = 8, 9
11; n = 10

�

Theorem 2.6. For n ≥ 11

DI (T (Cn)) =



2n
3 + 4; if n ≥ 11 & n ≡ 0(mod 3)

2(n+2)
3 + 4; if n ≥ 11 & n ≡ 1(mod 3)

2(n+1)
3 + 4; if n ≥ 11 & n ≡ 2(mod 3)

Proof. Let v1, v2, . . . , vn be the vertices of cycle Cn and u1, u2, . . . , un be the added vertices
corresponding to edges e1, e2, . . . , en to obtain T (Cn). Let G be the graph T (Cn). Then
|V (G)| = 2n and |E(T (G)| = 4n.
Proposition 1.6 gives the value of γ (T (Cn)), here we provide D(γ − set) for T (Cn) for
different possibilities of n as below:

• If n ≡ 0(mod 5) (i.e. n = 5k), consider D = {v2+5i, u4+5i|0 ≤ i < k}.
• If n ≡ 1(mod 5) (i.e. n = 5k + 1) or n ≡ 2(mod 5) (i.e. n = 5k + 2), consider
D = {v2+5i, u4+5i, vn|0 ≤ i < k}.

• If n ≡ 3(mod 5) (i.e. n = 5k + 3), consider D = {v2+5i, u4+5j |0 ≤ i ≤ k, 0 ≤ j <
k}.

• If n ≡ 4(mod 5) (i.e. n = 5k + 4), consider D = {v2+5i, u4+5j , vn|0 ≤ i ≤ k, 0 ≤
j < k}.

Hence, γ (T (Cn)) =


2n

5
; if 2n ≡ 0(mod 5)

⌊
2n

5

⌋
+ 1; otherwise

Clearly, DI (T (Cn)) ≤ |D|+m(G−D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (iv)

Now we define another subset S of V (T (Cn)) as below:

• If n ≡ 0(mod 3) (i.e. n = 3k) and n ≡ 2(mod 3) (i.e. n = 3k − 1), consider
S = {v2+3i, u2+3i|0 ≤ i < k} and |S| = 2k.
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• If n ≡ 1(mod 3) (i.e. n = 3k + 1), consider S = {v2+3i, u2+3i, vn|0 ≤ i < k} ∪

{vn, un} and |S| = 2(k + 1) =
2(n+ 2)

3
.

In all the above cases S is a dominating set for G as u1+3t, u3+3t ∈ N(u2+3t) and
v1+3t, v3+3t ∈ N(v2+3t) for t ∈ N ∪ {0} moreover m(G− S) = 4.
In order to compare the values of parameters |D|+m(G−D) and |S|+m(G−S) as well
as to check the minimality of |S| +m(G− S), we prepare the Table 3 for random values
of n between 11 to 25.

Table 3

1 2 3 4 5 6 7 8
n 2n |D| m(G−D) |D|+m(G−D) |S| m(G− S) |S|+m(G− S)
11 22 5 17 22 8 4 12
12 24 5 19 24 8 4 12
13 26 6 20 26 10 4 14
14 28 6 22 28 10 4 14
16 32 7 25 32 12 4 16
25 50 10 40 50 18 4 22

From columns 5 and 8 of Table 3, we can observe that for D (γ− set) and dominating set
S,
|S|+m(G− S) < |D|+m(G−D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (v)
We have verified that the above relation (v) is valid even for larger values of n.
From (iv) and (v), we have,
DI (T (Cn)) ≤ |S|+m(G− S) < |D|+m(G−D).
Hence, DI (T (Cn)) ≤ |S|+m(G− S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (vi)
We claim that DI (T (Cn)) = |S|+m(G− S).
If we consider any dominating set S1 of G such that, |D| ≤ |S1| < |S| then due to con-
struction of T (Cn), it generates large value of m(G− S1) such that,
|S|+m(G− S) < |S1|+m(G− S1).
Let S2 be dominating set of G with minimal cardinality such that m(G − S2) = 3 then,
|S|+m(G− S) ≤ |S2|+m(G− S2), for n = 13 and
|S|+m(G− S) < |S2|+m(G− S2), for n = 11, 12 and n ≥ 14.
Moreover if S3 is any dominating set of G with m(G − S3) = 2 or m(G − S3) = 1 then
clearly,
|S|+m(G− S) < |S3|+m(G− S3)
From above discussion we can say that among all dominating sets of G, S is such that
|S|+m(G− S) is minimum.
Therefore,
|S|+m(G− S) = min{| X | +m(G−X)|X is a dominating set}

= DI (T (Cn)).
Hence, for n ≥ 11
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DI (T (Cn)) =



2n
3 + 4; if n ≥ 11 & n ≡ 0(mod 3)

2(n+2)
3 + 4; if n ≥ 11 & n ≡ 1(mod 3)

2(n+1)
3 + 4; if n ≥ 11 & n ≡ 2(mod 3)

�

Corollary 2.7. DI (T (Cn))−DI (Cn) =



3; n = 3, 4, 5
4; n = 6, 7
5; n = 8, 9, 10
n
3 + 2; n ≥ 11 & n ≡ 0(mod 3)⌈
n
3

⌉
+ 2; n ≥ 11 & n ≡ 1(mod 3) or n ≡ 2(mod 3)

Proof. In view of Proposition 2.1, Theorem 2.5 and Theorem 2.6 the proof is obvious.
�

Theorem 2.8. DI (T (K1,n)) = n+ 2.

Proof. Let v be the apex vertex of K1,n and v1, v2, . . . , vn be the pendant vertices of K1,n

and u1, u2, . . . , un be the added vertices corresponding to edges e1, e2, . . . , en to obtain
T (K1,n). Let G be the graph T (K1,n).
Consider S = {v, u1, u2, . . . , un} then |S| = n + 1 and m(G − S) = 1. Clearly S is a
dominating set of G and |S|+m(G− S) = n+ 2.
For S1 = {v, u1, u2, . . . , un−1} then |S1| = n and m(G− S1) = 2 and |S1|+m(G− S1) =
n+ 2.
For S2 = {v, u1, u2, . . . , un−2} then |S2| = n−1 and m(G−S2) = 4 and |S2|+m(G−S2) =
n+ 3.
Similarly for any other dominating set S3 of G, |S|+m(G− S) ≤ |S3|+m(G− S3).
|S|+m(G− S) = min{| X | +m(G−X)|X is a dominating set}

= DI (T (K1,n)).
Hence, DI (T (K1,n)) = n+ 2. �

3. Concluding Remarks

The rapid growth of various modes of communication have emerged as a search for
sustainable and secured network. The vulnerability of network is an important issue with
special reference to defence objectives. We take up this problem in the context of ex-
pansion of graph network by means of total graph of a graph and investigate domination
integrity of T (Pn), T (Cn) and T (K1,n) and from Corollary 2.4 and Corollary 2.7 we con-
clude that the domination integrity increases in such circumstances. To investigate the
domination integrity for line graph, shadow graph and the graph obtained by switching of
a vertex in the context of Pn and Cn is an open area of research.

Acknowledgement Our thanks are due to the anonymous referee for careful reading
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