14 research outputs found

    Caught before Released: Structural Mapping of the Reaction Trajectory for the Sofosbuvir Activating Enzyme, Human Histidine Triad Nucleotide Binding Protein 1 (hHint1)

    No full text
    Human histidine triad nucleotide binding protein 1 (hHint1) is classified as an efficient nucleoside phosphoramidase and acyl-adenosine monophosphate hydrolase. Human Hint1 has been shown to be essential for the metabolic activation of nucleotide antiviral pronucleotides (i.e., proTides), such as the FDA approved hepatitis C drug, sofosbuvir. The active site of hHint1 comprises an ensemble of strictly conserved histidines, including nucleophilic His112. To structurally investigate the mechanism of hHint1 catalysis, we have designed and prepared nucleoside thiophosphoramidate substrates that are able to capture the transiently formed nucleotidylated-His112 intermediate (<b>E*</b>) using time-dependent crystallography. Utilizing a catalytically inactive hHint1 His112Asn enzyme variant and wild-type enzyme, the enzyme–substrate (<b>ES</b><sup><b>1</b></sup>) and product (<b>EP</b><sup><b>2</b></sup>) complexes were also cocrystallized, respectively, thus providing a structural map of the reaction trajectory. On the basis of these observations and the mechanistic necessity of proton transfers, proton inventory studies were carried out. Although we cannot completely exclude the possibility of more than one proton in flight, the results of these studies were consistent with the transfer of a single proton during the formation of the intermediate. Interestingly, structural analysis revealed that the critical proton transfers required for intermediate formation and hydrolysis may be mediated by a conserved active site water channel. Taken together, our results provide mechanistic insights underpinning histidine nucleophilic catalysis in general and hHint1 catalysis, in particular, thus aiding the design of future proTides and the elucidation of the natural function of the Hint family of enzymes

    Design, Synthesis, and Characterization of Sulfamide and Sulfamate Nucleotidomimetic Inhibitors of hHint1

    No full text
    Hint1 has recently emerged to be an important target of interest due to its involvement in the regulation of a broad range of CNS functions including opioid signaling, tolerance, neuropathic pain, and nicotine dependence. A series of inhibitors were rationally designed, synthesized, and tested for their inhibitory activity against hHint1 using isothermal titration calorimetry (ITC). The studies resulted in the development of the first small-molecule inhibitors of hHint1 with submicromolar binding affinities. A combination of thermodynamic and high-resolution X-ray crystallographic studies provides an insight into the biomolecular recognition of ligands by hHint1. These novel inhibitors have potential utility as molecular probes to better understand the role and function of hHint1 in the CNS

    A Highly Efficient Catalyst for Oxime Ligation and Hydrazone–Oxime Exchange Suitable for Bioconjugation

    No full text
    Imine-based reactions are useful for a wide range of bioconjugation applications. Although aniline is known to catalyze the oxime ligation reaction under physiological conditions, it suffers from slow reaction kinetics, specifically when a ketone is being used or when hydrazone–oxime exchange is performed. Here, we report on the discovery of a new catalyst that is up to 15 times more efficient than aniline. That catalyst, <i>m</i>-phenylenediamine (mPDA), was initially used to analyze the kinetics of oxime ligation on aldehyde- and ketone-containing small molecules. While mPDA is only modestly more effective than aniline when used in equal concentrations (∼2-fold), its much greater aqueous solubility relative to aniline allows it to be used at higher concentrations, resulting in significantly more efficient catalysis. In the context of protein labeling, it was first used to site-specifically label an aldehyde-functionalized protein through oxime ligation, and its kinetics were compared to reaction with aniline. Next, a protein was labeled with an aldehyde-containing substrate in crude cell lysate, captured with hydrazide-functionalized beads and then the kinetics of immobilized protein release via hydrazone-oxime exchange were analyzed. Our results show that mPDA can release and label 15 times more protein than aniline can in 3 h. Then, using the new catalyst, ciliary neurotrophic factor, a protein with therapeutic potential, was successfully labeled with a fluorophore in only 5 min. Finally, a protein containing the unnatural amino acid, <i>p</i>-acetyl phenylalanine, a ketone-containing residue, was prepared and PEGylated efficiently via oxime ligation using mPDA. This new catalyst should have a significant impact on the field of bioconjugation, where oxime ligation and hydrazone–oxime exchange are commonly employed

    A Crystal Structure Based Guide to the Design of Human Histidine Triad Nucleotide Binding Protein 1 (hHint1) Activated ProTides

    No full text
    Nucleotide analogues that incorporate a metabolically labile nucleoside phosphoramidate (a ProTide) have found utility as prodrugs. In humans, ProTides can be cleaved by human histidine triad nucleotide binding protein 1 (hHint1) to expose the nucleotide monophosphate. Activation by this route circumvents highly selective nucleoside kinases that limit the use of nucleosides as prodrugs. To better understand the diversity of potential substrates of hHint1, we created and studied a series of phosphoramidate nucleosides. Using a combination of enzyme kinetics, X-ray crystallography, and isothermal titration calorimetry with both wild-type and inactive mutant enzymes, we have been able to explore the energetics of substrate binding and establish a structural basis for catalytic efficiency. Diverse nucleobases are well tolerated, but portions of the ribose are needed to position substrates for catalysis. Beneficial characteristics of the amine leaving group are also revealed. Structural principles revealed by these results may be exploited to tune the rate of substrate hydrolysis to strategically alter the intracellular release of the product nucleoside monophosphate from the ProTide
    corecore