78 research outputs found

    EQUALISATION TECHNIQUES FOR MULTI-LEVEL DIGITAL MAGNETIC RECORDING

    Get PDF
    A large amount of research has been put into areas of signal processing, medium design, head and servo-mechanism design and coding for conventional longitudinal as well as perpendicular magnetic recording. This work presents some further investigation in the signal processing and coding aspects of longitudinal and perpendicular digital magnetic recording. The work presented in this thesis is based upon numerical analysis using various simulation methods. The environment used for implementation of simulation models is C/C + + programming. Important results based upon bit error rate calculations have been documented in this thesis. This work presents the new designed Asymmetric Decoder (AD) which is modified to take into account the jitter noise and shows that it has better performance than classical BCJR decoders with the use of Error Correction Codes (ECC). In this work, a new method of designing Generalised Partial Response (GPR) target and its equaliser has been discussed and implemented which is based on maximising the ratio of the minimum squared euclidean distance of the PR target to the noise penalty introduced by the Partial Response (PR) filter. The results show that the new designed GPR targets have consistently better performance in comparison to various GPR targets previously published. Two methods of equalisation including the industry's standard PR, and a novel Soft-Feedback- Equalisation (SFE) have been discussed which are complimentary to each other. The work on SFE, which is a novelty of this work, was derived from the problem of Inter Symbol Interference (ISI) and noise colouration in PR equalisation. This work also shows that multi-level SFE with MAP/BCJR feedback based magnetic recording with ECC has similar performance when compared to high density binary PR based magnetic recording with ECC, thus documenting the benefits of multi-level magnetic recording. It has been shown that 4-level PR based magnetic recording with ECC at half the density of binary PR based magnetic recording has similar performance and higher packing density by a factor of 2. A novel technique of combining SFE and PR equalisation to achieve best ISI cancellation in a iterative fashion has been discussed. A consistent gain of 0.5 dB and more is achieved when this technique is investigated with application of Maximum Transition Run (MTR) codes. As the length of the PR target in PR equalisation increases, the gain achieved using this novel technique consistently increases and reaches up to 1.2 dB in case of EEPR4 target for a bit error rate of 10-5

    An efficient constructive e-alignment for onsite-online learning

    Get PDF
    This paper aims at proposing an efficient constructive electronic-based alignment (CeA) to promote self-learning amongst the students via e-learning environment where e-lectures/e-tutorials are developed followed by e-assessments. The CeA is developed based on behaviourism, cognitivism, humanism and constructivism to ensure the students’ learning does take place in the e-learning environment. Considering engineering related courses at higher education, it has been shown that the decline in mathematical background of the students causes difficulties in accomplishing the quantitative curricula. A well-designed constructive alignment is thus necessary to support active learning of the students having different background. Onsite tutorials and seminars may be helpful; however, they may not be very effective, especially in a large-sized and/or high-diversity class. Therefore, in this paper, the proposed CeA not only helps the onsite students strengthen their knowledge but also provides the offsite students with various kinds of learning supplement. Particularly, a case study is presented to show the potential impact of the CeA on both onsite and online learning of mathematics for postgraduate students in both telecommunications engineering and computer networks

    QoS-based routing over software defined networks

    Get PDF
    Quality of Service (QoS) relies on the shaping of preferential delivery services for applications in favour of ensuring sufficient bandwidth, controlling latency and reducing packet loss. QoS can be achieved by prioritizing important broadband data traffic over the less important one. Thus, depending on the users’ needs, video, voice or data traffic take different priority based on the prevalent importance within a particular context. This prioritization might require changes in the configuration of each network entity which can be difficult in traditional network architecture. To this extent, this paper investigates the use of a QoS-based routing scheme over a Software-Defined Network (SDN). A real SDN test-bed is constructed using Raspberry Pi computers as virtual SDN switches managed by a centralized controller. It is shown that a QoS-based routing approach over SDN generates enormous control possibilities and enables automation

    On demand multicast routing in wireless sensor networks

    Get PDF
    The wireless networking environment presents imposing challenges to the study of broadcasting and multicasting problems. Developing an algorithm to optimize communication amongst a group of spatially distributed sensor nodes in a WSN (Wireless Sensor Network) has been met with a number challenges due to the characterization of the sensor node device. These challenges include, but are not limited to: energy, memory, and throughput constraints. The traditional approach to overcome these challenges have emphasised the development of low power electronics, efficient modulation, coding, antenna design etc., it has been recognised that networking techniques can also have a strong impact on the energy efficiency of such systems. A variety of networking based approaches to energy efficiency are possible. One of the well-known approaches is to apply clustering techniques to effectively establish an ordered connection of sensor nodes whilst improving the overall network lifetime. This paper proposes an improved clustering based multicast approach that allows any cluster head to be a multicast source with an unlimited number of subscribers, to optimize group communication in WSNs whilst ensuring sensor nodes do not deprecate rapidly in energy levels. We review several clustering approaches and examine multicast versus broadcast communication in WSNs

    LearnQoS: a learning approach for optimizing QoS over multimedia-based SDNs

    Get PDF
    As video-based services become an integral part of the end-users’ lives, there is an imminent need for increase in the backhaul capacity and resource management efficiency to enable a highly enhanced multimedia experience to the endusers. The next-generation networking paradigm offers wide advantages over the traditional networks through simplifying the management layer, especially with the adoption of Software Defined Networks (SDN). However, enabling Quality of Service (QoS) provisioning still remains a challenge that needs to be optimized especially for multimedia-based applications. In this paper, we propose LearnQoS, an intelligent QoS management framework for multimedia-based SDNs. LearnQoS employs a policy-based network management (PBNM) to ensure the compliance of QoS requirements and optimizes the operation of PBNM through Reinforcement Learning (RL). The proposed LearnQoS framework is implemented and evaluated under an experimental setup environment and compared with the default SDN operation in terms of PSNR, MOS, throughput and packet loss

    Policy-based QoS management framework for software-defined networks

    Get PDF
    With the emerging trends of virtualization of cloud computing and big data applications, network management has become a challenging problem for optimizing the network state while satisfying the applications’ Quality of Service (QoS) requirements. This paper proposes a policy-based management framework over Software-Defined Networks (SDN) for QoS provisioning. The proposed approach monitors the QoS parameters of the active flows and dynamically enforces new decisions on the underlying SDN switches to adapt the network state to the current demanded high-level policies. Moreover, the proposed solution makes use of Neural Networks to identify the violating flows causing the network congestion. Upon detection of a policy violation two route management techniques are implemented, such as: rerouting and rate limiting. The proposed framework was implemented and evaluated within an experimental test bed setup. The results indicate that the proposed PBNM-based SDN framework enables QoS provisioning and outperforms the default SDN in terms of throughput, packet loss rate and latency

    On the performance, availability and energy consumption modelling of clustered IoT systems

    Get PDF
    Wireless sensor networks (WSNs) form a large part of the ecosystem of the Internet of Things (IoT), hence they have numerous application domains with varying performance and availability requirements. Limited resources that include processing capability, queue capacity, and available energy in addition to frequent node and link failures degrade the performance and availability of these networks. In an attempt to efficiently utilise the limited resources and to maintain the reliable network with efficient data transmission; it is common to select a clustering approach, where a cluster head is selected among the diverse IoT devices. This study presents the stochastic performance as well as the energy evaluation model for WSNs that have both node and link failures. The model developed considers an integrated performance and availability approach. Various duty cycling schemes within the medium-access control of the WSNs are also considered to incorporate the impact of sleeping/idle states that are presented using analytical modeling. The results presented using the proposed analytical models show the effects of factors such as failures, various queue capacities and system scalability. The analytical results presented are in very good agreement with simulation results and also present an important fact that the proposed models are very useful for identification of thresholds between WSN system characteristics
    • …
    corecore