32,505 research outputs found

    Non-equilibrium conductance of a three-terminal quantum dot in the Kondo regime: Perturbative Renormalization Group

    Full text link
    Motivated by recent experiments, we consider a single-electron transistor in the Kondo regime which is coupled to three leads in the presence of large bias voltages. Such a steady-state non-equilibrium system is to a large extent governed by a decoherence rate induced by the current through the dot. As the two-terminal conductance turns out to be rather insensitive to the decoherence rate, we study the conductance in a three-terminal device using perturbative renormalization group and calculate the characteristic splitting of the Kondo resonance. The interplay between potential biases and anisotropy in coupling to the three leads determines the decoherence rate and the conditions for strong coupling.Comment: 4 pages, 4 figure

    Thermodynamics of Vortices in the Plane

    Full text link
    The thermodynamics of vortices in the critically coupled abelian Higgs model, defined on the plane, are investigated by placing NN vortices in a region of the plane with periodic boundary conditions: a torus. It is noted that the moduli space for NN vortices, which is the same as that of NN indistinguishable points on a torus, fibrates into a CPN−1CP_{N-1} bundle over the Jacobi manifold of the torus. The volume of the moduli space is a product of the area of the base of this bundle and the volume of the fibre. These two values are determined by considering two 2-surfaces in the bundle corresponding to a rigid motion of a vortex configuration, and a motion around a fixed centre of mass. The partition function for the vortices is proportional to the volume of the moduli space, and the equation of state for the vortices is P(A−4πN)=NTP(A-4\pi N)=NT in the thermodynamic limit, where PP is the pressure, AA the area of the region of the plane occupied by the vortices, and TT the temperature. There is no phase transition.Comment: 17 pages, DAMTP 93-3

    Using artificial intelligence in fungal lung disease: CPA CT imaging as an example

    Get PDF
    This positioning paper aims to discuss current challenges and opportunities for artificial intelligence (AI) in fungal lung disease, with a focus on chronic pulmonary aspergillosis and some supporting proof-of-concept results using lung imaging. Given the high uncertainty in fungal infection diagnosis and analyzing treatment response, AI could potentially have an impactful role; however, developing imaging-based machine learning raises several specific challenges. We discuss recommendations to engage the medical community in essential first steps towards fungal infection AI with gathering dedicated imaging registries, linking with non-imaging data and harmonizing image-finding annotations

    Fluorides, orthodontics and demineralization: a systematic review

    Get PDF
    Objectives: To evaluate the effectiveness of fluoride in preventing white spot lesion (WSL) demineralization during orthodontic treatment and compare all modes of fluoride delivery. Data sources: The search strategy for the review was carried out according to the standard Cochrane systematic review methodology. The following databases were searched for RCTs or CCTs: Cochrane Clinical Trials Register, Cochrane Oral Health Group Specialized Trials Register, MEDLINE and EMBASE. Inclusion and exclusion criteria were applied when considering studies to be included. Authors of trials were contacted for further data. Data selection: The primary outcome of the review was the presence or absence of WSL by patient at the end of treatment. Secondary outcomes included any quantitative assessment of enamel mineral loss or lesion depth. Data extraction: Six reviewers independently, in duplicate, extracted data, including an assessment of the methodological quality of each trial. Data synthesis: Fifteen trials provided data for this review, although none fulfilled all the methodological quality assessment criteria. One study found that a daily NaF mouthrinse reduced the severity of demineralization surrounding an orthodontic appliance (lesion depth difference –70.0 µm; 95% CI –118.2 to –21.8 µm). One study found that use of a glass ionomer cement (GIC) for bracket bonding reduced the prevalence of WSL (Peto OR 0.35; 95% CI 0.15–0.84) compared with a composite resin. None of the studies fulfilled all of the methodological quality assessment criteria. Conclusions: There is some evidence that the use of a daily NaF mouthrinse or a GIC for bonding brackets might reduce the occurrence and severity of WSL during orthodontic treatment. More high quality, clinical research is required into the different modes of delivering fluoride to the orthodontic patient

    Determining the Structure of Supersymmetry-Breaking with Renormalization Group Invariants

    Full text link
    If collider experiments demonstrate that the Minimal Supersymmetric Standard Model (MSSM) is a good description of nature at the weak scale, the experimental priority will be the precise determination of superpartner masses. These masses are governed by the weak scale values of the soft supersymmetry (SUSY)-breaking parameters, which are in turn highly dependent on the SUSY-breaking scheme present at high scales. It is therefore of great interest to find patterns in the soft parameters that can distinguish different high scale SUSY-breaking structures, identify the scale at which the breaking is communicated to the visible sector, and determine the soft breaking parameters at that scale. In this work, we demonstrate that 1-loop Renormalization Group~(RG) invariant quantities present in the MSSM may be used to answer each of these questions. We apply our method first to generic flavor-blind models of SUSY-breaking, and then examine in detail the subset of these models described by General Gauge Mediation and the constrained MSSM with non-universal Higgs masses. As RG invariance generally does not hold beyond leading-log order, we investigate the magnitude and direction of the 2-loop corrections. We find that with superpartners at the TeV scale, these 2-loop effects are either negligible, or they are of the order of optimistic experimental uncertainties and have definite signs, which allows them to be easily accounted for in the overall uncertainty.Comment: v2 -- references added, version to be published in PRD; 40 page

    SUSY-Breaking Parameters from RG Invariants at the LHC

    Full text link
    We study Renormalization Group invariant (RGI) quantities in the Minimal Supersymmetric Standard Model and show that they are a powerful and simple instrument for testing high scale models of supersymmetry (SUSY)-breaking. For illustration, we analyze the frameworks of minimal and general gauge mediated (MGM and GGM) SUSY-breaking, with additional arbitrary soft Higgs mass parameters at the messenger scale. We show that if a gaugino and two first generation sfermion soft masses are determined at the LHC, the RGIs lead to MGM sum rules that yield accurate predictions for the other gaugino and first generation soft masses. RGIs can also be used to reconstruct the fundamental MGM parameters (including the messenger scale), calculate the hypercharge D-term, and find relationships among the third generation and Higgs soft masses. We then study the extent to which measurements of the full first generation spectrum at the LHC may distinguish different SUSY-breaking scenarios. In the case of MGM, although most deviations violate the sum rules by more than estimated experimental errors, we find a 1-parameter family of GGM models that satisfy the constraints and produce the same first generation spectrum. The GGM-MGM degeneracy is lifted by differences in the third generation masses and the messenger scales.Comment: (v1) 30 pages; (v2) mislabeling in figs 2 and 3 corrected, version accepted for publication in Phys. Rev.

    Local origins impart conserved bone type-related differences in human osteoblast behaviour

    Get PDF
    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p < 0.01) in subchondral and cortical than trabecular osteoblasts, in OA and OP, and this bone type-related differences were conserved despite consistently faster growth in OA. RUNX2/SP7 levels and TNAP mRNA and protein activity were, however, greater in trabecular than subchondral and cortical osteoblasts in OA and OP. BSP-II levels were significantly greater in trabecular and lowest in cortical osteoblasts in both OA and OP. In contrast, BGLAP levels showed divergent bone type-selective behaviour; highest in osteoblasts from subchondral origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro

    Study of the technique of stellar occultation

    Get PDF
    The results are reported of a study of the stellar occultation technique for measuring the composition of the atmosphere. The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km deep for molecular oxygen and 30 km deep for ozone. Intensity profiles obtained during various occultations were analyzed by first determining the tangential columm density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study
    • …
    corecore