12 research outputs found

    Controlling the plasmonic properties of ultrathin TiN films at the atomic level

    Full text link
    By combining first principles theoretical calculations and experimental optical and structural characterization such as spectroscopic ellipsometry, X-ray spectroscopy, and electron microscopy, we study the dielectric permittivity and plasmonic properties of ultrathin TiN films at an atomistic level. Our results indicate a remarkably persistent metallic character of ultrathin TiN films and a progressive red shift of the plasmon energy as the thickness of the film is reduced. The microscopic origin of this trend is interpreted in terms of the characteristic two-band electronic structure of the system. Surface oxidation and substrate strain are also investigated to explain the deviation of the optical properties from the ideal case. This paves the way to the realization of ultrathin TiN films with tailorable and tunable plasmonic properties in the visible range for applications in ultrathin metasurfaces and flexible optoelectronic devices.Comment: 24 pages, 8 Figures, research articl

    Ultrabright room-temperature single-photon emission from nanodiamond nitrogen-vacancy centers with sub-nanosecond excited-state lifetime

    Full text link
    Ultrafast emission rates obtained from quantum emitters coupled to plasmonic nanoantennas have recently opened fundamentally new possibilities in quantum information and sensing applications. Plasmonic nanoantennas greatly improve the brightness of quantum emitters by dramatically shortening their fluorescence lifetimes. Gap plasmonic nanocavities that support strongly confined modes are of particular interest for such applications. We demonstrate single-photon emission from nitrogen-vacancy (NV) centers in nanodiamonds coupled to nanosized gap plasmonic cavities with internal mode volumes about 10 000 times smaller than the cubic vacuum wavelength. The resulting structures features sub-nanosecond NV excited-state lifetimes and detected photon rates up to 50 million counts per second. Analysis of the fluorescence saturation allows the extraction of the multi-order excitation rate enhancement provided by the nanoantenna. Efficiency analysis shows that the NV center is producing up to 0.25 billion photons per second in the far-field

    Transdimensional Plasmonic Titanium Nitride for Tailorable Nanophotonics

    No full text
    In the realm of tunable optical devices, 3D nanostructures with metals and dielectrics have been utilized in a wide variety of practical applications ranging from optical switching to beam-steering devices. 2D materials, on the other hand, have enabled the exploration of truly new physics unattainable with 3D systems due to quantum confinement leading to unique optical properties and enhanced light-matter interactions. Transdimensional materials (TDMs) – atomically thin films of metals – can couple the robustness of 3D nanostructures with the new physics enabled by 2D features. However, the evolution of the optical properties in the transdimensional regime between 3D and 2D is still underexplored. The optical properties of metallic TDMs are expected to show unprecedented tailorability, including strong dependences on the film thickness, composition, strain, and surface termination. They also have an increased sensitivity to external optical and electrical perturbations, owing to their extraordinary light-confinement. Additionally, the small atomic thicknesses may lead to strongly confined surface plasmons and quantum and nonlocal phenomena. The strong tunability and light-confinement offered by TDMs have resulted in a search for atomically thin plasmonic material platforms that facilitate active metasurfaces with novel functionalities in the visible and near infrared (NIR) range. In this research, we explore the plasmonic properties and tailorability of atomically thin titanium nitride (TiN). We experimentally and theoretically study the thickness-dependent optical properties of epitaxial TiN films with thicknesses down to 1 nm to demonstrate confinement induced optical properties. Overall, this research demonstrates the potential of TDMs for unlocking novel optical phenomena at visible and NIR wavelengths and realizing a new generation of atomically thin tunable nanophotonic devices

    Dental implant biomaterials

    No full text
    Implants have been gaining popularity amongst the patients and frequently are being considered as a first treatment option. Modern dentistry is beginning to understand, realize, and utilize the benefits of biotechnology in health care. Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about the different biomaterials used for the dental implants

    Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures

    No full text
    Large-scale, dense arrays of plasmonic nanodisks on low-modulus, high-elongation elastomeric substrates represent a class of tunable optical systems, with reversible ability to shift key optical resonances over a range of nearly 600 nm at near-infrared wavelengths. At the most extreme levels of mechanical deformation (strains >100%), nonlinear buckling processes transform initially planar arrays into three-dimensional configurations, in which the nanodisks rotate out of the plane to form linear arrays with “wavy” geometries. Analytical, finite-element, and finite-difference time-domain models capture not only the physics of these buckling processes, including all of the observed modes, but also the quantitative effects of these deformations on the plasmonic responses. The results have relevance to mechanically tunable optical systems, particularly to soft optical sensors that integrate on or in the human body
    corecore