470 research outputs found

    Study of the ηπo\eta\pi^o system in the mass range up to 1200 MeV

    Full text link
    The reaction πpηπon\pi^-p \to \eta\pi^o n has been studied with GAMS-2000 spectrometer in the secondary 38 GeV/c π\pi^--beam of the IHEP U-70 accelerator. Partial wave analysis of the reaction has been performed in the ηπo\eta\pi^o mass range up to 1200 MeV. The a0(980)a_0(980)-meson is seen as a sharp peak in S-wave. The tt-dependence of a0(980)a_0(980) production cross section has been studied. Dominant production of the a0(980)a_0(980) at a small transfer momentum tt confirms the hypothesis of Achasov and Shestakov about significant contribution of the ρ2\rho_2 exchange (IGJPC=1+2I^GJ^{PC}=1^+2^{--}) in the mechanism of a0(980)a_0(980) meson production in tt-channel of the reaction.Comment: 4 pages, 3 figures, talk given at HADRON'9

    A study of the etapipi channel produced in central pp interactions at 450 GeV/c

    Get PDF
    The reaction pp -> pf (eta pi pi) ps has been studied at 450 GeV/c. There is clear evidence for an a2(1320)pi decay mode of the eta2(1645) and eta2(1870). In addition, there is evidence for an a0(980)pi$ decay mode of both resonances and an f2(1270)eta decay mode of the eta2(1870). No evidence is found for a JPC = 2++ a2(1320)pi wave.Comment: 15 pages, Latex, 4 Figures Branching ratio a2pi /f2 eta correcte

    3D Position Sensitive XeTPC for Dark Matter Search

    Get PDF
    The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) for dark matter search is described. Results from a prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark Matter and Dark Energy in the Universe

    First Dark Matter Results from the XENON100 Experiment

    Full text link
    The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter WIMPs scattering off 62 kg of liquid xenon in an ultra-low background dual-phase time projection chamber. In this letter, we present first dark matter results from the analysis of 11.17 live days of non-blind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the pre-defined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross-sections above 3.4 x 10^-44 cm^2 for 55 GeV/c^2 WIMPs at 90% confidence level. Below 20 GeV/c^2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.Comment: 5 pages, 5 figures. Matches published versio

    A study of the f0(1370), f0(1500), f0(2000) and f2(1950) observed in the centrally produced 4pi final states

    Get PDF
    The production and decay properties of the f0(1370), f0(1500), f0(2000) and f2(1950) have been studied in central pp interactions at 450 GeV/c. The dPT, phi and |t| distributions of these resonances are presented. For the J = 0 states, the f0(1370) and f0(2000) have similar dPT and phi dependences. These are different to the dPT and phi dependences of the f0(980), f0(1500) and f0(1710). For the J = 2 states the f2(1950) has different dependences to the f2(1270) and f2'(1520). This shows that the dPT and phi dependences are not just J phenomena.Comment: 14 pages, Latex, 4 Figure

    Constraints on inelastic dark matter from XENON10

    Full text link
    It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to Enr=75_{nr}=75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses mχ150m_{\chi}\gtrsim150 GeV are disfavored.Comment: 8 pages, 4 figure

    First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

    Full text link
    The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber (XeTPC) to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon, to discriminate signal from background down to 4.5 keV nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 x 10^{-44} cm^2 for a WIMP mass of 100 GeV/c^2, and 4.5 x 10^{-44} cm^2 for a WIMP mass of 30 GeV/c^2. This result further constrains predictions of supersymmetric models.Comment: accepted for publication in Phys. Rev. Let
    corecore