44 research outputs found

    Index of Soil Moisture Using Raw Landsat Image Digital Count Data in Texas High Plains

    Get PDF
    The growth and yield of crops in the arid and semi-arid regions of the world is driven by the amount of soil moisture available to the crop through rainfall and irrigation. Various methods have been developed for quantifying the soil moisture status of agricultural crops. Recent technological advances in remote sensing have shown that soil moisture can be measured with a variety of remote sensing techniques, each with its own strengths and weaknesses. In this study, building on of the strengths of multispectral satellite imagery, a new approach is suggested for estimating soil moisture content. A soil moisture index, the Perpendicular Soil Moisture Index (PSMI), is proposed; it is evaluated using raw image digital count (DC) data in the red, near-infrared, and thermal infrared spectral bands. To test this approach, soil moisture was measured in 18 agricultural fields in the semi-arid Texas High Plains over two years and compared to corresponding PSMI values determined from Landsat image data. These results showed that PSMI was strongly correlated (R2 = 0.79) with observed soil moisture. It was further demonstrated that maps of PSMI developed from Landsat imagery could be constructed to show the relative spatial distribution of soil moisture across a region. While further study is needed to determine the exact relationship between PSMI and soil moisture in larger areas with different climates, this study suggests that PSMI is a good indicator of soil moisture and has potential for operationally monitoring soil moisture conditions at the field to regional scales

    Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development

    Get PDF
    Unmanned Aerial Vehicles and Systems (UAV or UAS) have become increasingly popular in recent years for agricultural research applications. UAS are capable of acquiring images with high spatial and temporal resolutions that are ideal for applications in agriculture. The objective of this study was to evaluate the performance of a UAS-based remote sensing system for quantification of crop growth parameters of sorghum (Sorghum bicolor L.) including leaf area index (LAI), fractional vegetation cover (fc) and yield. The study was conducted at the Texas A&M Research Farm near College Station, Texas, United States. A fixed-wing UAS equipped with a multispectral sensor was used to collect image data during the 2016 growing season (April±October). Flight missions were successfully carried out at 50 days after planting (DAP; 25 May), 66 DAP (10 June) and 74 DAP (18 June). These flight missions provided image data covering the middle growth period of sorghum with a spatial resolution of approximately 6.5 cm. Field measurements of LAI and fc were also collected. Four vegetation indices were calculated using the UAS images. Among those indices, the normalized difference vegetation index (NDVI) showed the highest correlation with LAI, fc and yield with R2 values of 0.91, 0.89 and 0.58 respectively. Empirical relationships between NDVI and LAI and between NDVI and fc were validated and proved to be accurate for estimating LAI and fc from UAS-derived NDVI values. NDVI determined from UAS imagery acquired during the flowering stage (74 DAP) was found to be the most highly correlated with final grain yield. The observed high correlations between UAS-derived NDVI and the crop growth parameters (fc, LAI and grain yield) suggests the applicability of UAS for withinseason data collection of agricultural crops such as sorghum

    Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research

    Get PDF
    Advances in automation and data science have led agriculturists to seek real-time, high-quality, high-volume crop data to accelerate crop improvement through breeding and to optimize agronomic practices. Breeders have recently gained massive data-collection capability in genome sequencing of plants. Faster phenotypic trait data collection and analysis relative to genetic data leads to faster and better selections in crop improvement. Furthermore, faster and higher-resolution crop data collection leads to greater capability for scientists and growers to improve precision-agriculture practices on increasingly larger farms; e.g., site-specific application of water and nutrients. Unmanned aerial vehicles (UAVs) have recently gained traction as agricultural data collection systems. Using UAVs for agricultural remote sensing is an innovative technology that differs from traditional remote sensing in more ways than strictly higher-resolution images; it provides many new and unique possibilities, as well as new and unique challenges. Herein we report on processes and lessons learned from year 1-the summer 2015 and winter 2016 growing seasons-of a large multidisciplinary project evaluating UAV images across a range of breeding and agronomic research trials on a large research farm. Included are team and project planning, UAV and sensor selection and integration, and data collection and analysis workflow. The study involved many crops and both breeding plots and agronomic fields. The project's goal was to develop methods for UAVs to collect high-quality, high-volume crop data with fast turnaround time to field scientists. The project included five teams: Administration, Flight Operations, Sensors, Data Management, and Field Research. Four case studies involving multiple crops in breeding and agronomic applications add practical descriptive detail. Lessons learned include critical information on sensors, air vehicles, and configuration parameters for both. As the first and most comprehensive project of its kind to date, these lessons are particularly salient to researchers embarking on agricultural research with UAVs

    Index of Soil Moisture Using Raw Landsat Image Digital Count Data in Texas High Plains

    No full text
    The growth and yield of crops in the arid and semi-arid regions of the world is driven by the amount of soil moisture available to the crop through rainfall and irrigation. Various methods have been developed for quantifying the soil moisture status of agricultural crops. Recent technological advances in remote sensing have shown that soil moisture can be measured with a variety of remote sensing techniques, each with its own strengths and weaknesses. In this study, building on of the strengths of multispectral satellite imagery, a new approach is suggested for estimating soil moisture content. A soil moisture index, the Perpendicular Soil Moisture Index (PSMI), is proposed; it is evaluated using raw image digital count (DC) data in the red, near-infrared, and thermal infrared spectral bands. To test this approach, soil moisture was measured in 18 agricultural fields in the semi-arid Texas High Plains over two years and compared to corresponding PSMI values determined from Landsat image data. These results showed that PSMI was strongly correlated (R2 = 0.79) with observed soil moisture. It was further demonstrated that maps of PSMI developed from Landsat imagery could be constructed to show the relative spatial distribution of soil moisture across a region. While further study is needed to determine the exact relationship between PSMI and soil moisture in larger areas with different climates, this study suggests that PSMI is a good indicator of soil moisture and has potential for operationally monitoring soil moisture conditions at the field to regional scales

    Improvement of the Trapezoid Method Using Raw Landsat Image Digital Count Data for Soil Moisture Estimation in the Texas (USA) High Plains

    No full text
    Variations in soil moisture strongly affect surface energy balances, regional runoff, land erosion and vegetation productivity (i.e., potential crop yield). Hence, the estimation of soil moisture is very valuable in the social, economic, humanitarian (food security) and environmental segments of society. Extensive efforts to exploit the potential of remotely sensed observations to help quantify this complex variable are ongoing. This study aims at developing a new index, the Thermal Ground cover Moisture Index (TGMI), for estimating soil moisture content. This index is based on empirical parameterization of the relationship between raw image digital count (DC) data in the thermal infrared spectral band and ground cover (determined from raw image digital count data in the red and near-infrared spectral bands).The index uses satellite-derived information only, and the potential for its operational application is therefore great. This study was conducted in 18 commercial agricultural fields near Lubbock, TX (USA). Soil moisture was measured in these fields over two years and statistically compared to corresponding values of TGMI determined from Landsat image data. Results indicate statistically significant correlations between TGMI and field measurements of soil moisture (R2 = 0.73, RMSE = 0.05, MBE = 0.17 and AAE = 0.049), suggesting that soil moisture can be estimated using this index. It was further demonstrated that maps of TGMI developed from Landsat imagery could be constructed to show the relative spatial distribution of soil moisture across a region

    Nitrogen Fertilizer Management in Dryland Wheat Cropping Systems

    No full text
    Wheat is the most widely cultivated food crop in the world, which provides nutrition to most of the world population and is well adapted to a wide range of environmental conditions. Timely and efficient rates of nitrogen (N) application are vital for increasing wheat grain yield and protein content, and maintaining environmental sustainability. The goal of this study was to investigate the effect of using different rates and split application of N on the performance of spring wheat in dryland cropping systems. The experiment was conducted in three different locations in Montana and Idaho during two consecutive growing seasons. A split-plot experimental design was used with three at planting N fertilization application (0, 90 and 135 kg N ha−1) and two topdressing N fertilization strategies as treatments. A number of variables such as grain yield (GY), protein content (GP) in the grains and N uptake (NUP) were assessed. There was a significant effect of climate, N rate, and time application on the wheat performance. The results showed that at-planting N fertilizer application of 90 kg N ha−1 has significantly increased GY, GP and NUP. On the other hand, for these site-years, increasing at-planting N fertilizer rate to 135 kg N ha−1 did not further enhance wheat GY, GP and NUP values. For all six site-years, topdress N fertilizer applied at flowering did not improve wheat GY, GP and NUP compared to at-planting fertilizer alone. As the risk of yield loss is minimal with split N application, from these results we concluded the best treatment for study is treatments that had received 90 kg N ha−1 split as 45 kg N ha−1 at planting and 45 kg N ha−1 at flowering

    Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development

    Get PDF
    Unmanned Aerial Vehicles and Systems (UAV or UAS) have become increasingly popular in recent years for agricultural research applications. UAS are capable of acquiring images with high spatial and temporal resolutions that are ideal for applications in agriculture. The objective of this study was to evaluate the performance of a UAS-based remote sensing system for quantification of crop growth parameters of sorghum (Sorghum bicolor L.) including leaf area index (LAI), fractional vegetation cover (fc) and yield. The study was conducted at the Texas A&M Research Farm near College Station, Texas, United States. A fixed-wing UAS equipped with a multispectral sensor was used to collect image data during the 2016 growing season (April±October). Flight missions were successfully carried out at 50 days after planting (DAP; 25 May), 66 DAP (10 June) and 74 DAP (18 June). These flight missions provided image data covering the middle growth period of sorghum with a spatial resolution of approximately 6.5 cm. Field measurements of LAI and fc were also collected. Four vegetation indices were calculated using the UAS images. Among those indices, the normalized difference vegetation index (NDVI) showed the highest correlation with LAI, fc and yield with R2 values of 0.91, 0.89 and 0.58 respectively. Empirical relationships between NDVI and LAI and between NDVI and fc were validated and proved to be accurate for estimating LAI and fc from UAS-derived NDVI values. NDVI determined from UAS imagery acquired during the flowering stage (74 DAP) was found to be the most highly correlated with final grain yield. The observed high correlations between UAS-derived NDVI and the crop growth parameters (fc, LAI and grain yield) suggests the applicability of UAS for withinseason data collection of agricultural crops such as sorghum

    Index of Soil Moisture Using Raw Landsat Image Digital Count Data in Texas High Plains

    Get PDF
    The growth and yield of crops in the arid and semi-arid regions of the world is driven by the amount of soil moisture available to the crop through rainfall and irrigation. Various methods have been developed for quantifying the soil moisture status of agricultural crops. Recent technological advances in remote sensing have shown that soil moisture can be measured with a variety of remote sensing techniques, each with its own strengths and weaknesses. In this study, building on of the strengths of multispectral satellite imagery, a new approach is suggested for estimating soil moisture content. A soil moisture index, the Perpendicular Soil Moisture Index (PSMI), is proposed; it is evaluated using raw image digital count (DC) data in the red, near-infrared, and thermal infrared spectral bands. To test this approach, soil moisture was measured in 18 agricultural fields in the semi-arid Texas High Plains over two years and compared to corresponding PSMI values determined from Landsat image data. These results showed that PSMI was strongly correlated (R2 = 0.79) with observed soil moisture. It was further demonstrated that maps of PSMI developed from Landsat imagery could be constructed to show the relative spatial distribution of soil moisture across a region. While further study is needed to determine the exact relationship between PSMI and soil moisture in larger areas with different climates, this study suggests that PSMI is a good indicator of soil moisture and has potential for operationally monitoring soil moisture conditions at the field to regional scales

    UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds

    No full text
    Leaf area index (LAI) and height are two critical measures of maize crops that are used in ecophysiological and morphological studies for growth evaluation, health assessment, and yield prediction. However, mapping spatial and temporal variability of LAI in fields using handheld tools and traditional techniques is a tedious and costly pointwise operation that provides information only within limited areas. The objective of this study was to evaluate the reliability of mapping LAI and height of maize canopy from 3D point clouds generated from UAV oblique imagery with the adaptive micro-terrain model. The experiment was carried out in a field planted with three cultivars having different canopy shapes and four replicates covering a total area of 48 × 36 m. RGB images in nadir and oblique view were acquired from the maize field at six different time slots during the growing season. Images were processed by Agisoft Metashape to generate 3D point clouds using the structure from motion method and were later processed by MATLAB to obtain clean canopy structure, including height and density. The LAI was estimated by a multivariate linear regression model using crop canopy descriptors derived from the 3D point cloud, which account for height and leaf density distribution along the canopy height. A simulation analysis based on the Sine function effectively demonstrated the micro-terrain model from point clouds. For the ground truth data, a randomized block design with 24 sample areas was used to manually measure LAI, height, N-pen data, and yield during the growing season. It was found that canopy height data from the 3D point clouds has a relatively strong correlation (R2 = 0.89, 0.86, 0.78) with the manual measurement for three cultivars with CH90. The proposed methodology allows a cost-effective high-resolution mapping of in-field LAI index extraction through UAV 3D data to be used as an alternative to the conventional LAI assessments even in inaccessible regions
    corecore