42 research outputs found

    ADHD and Disruptive behavior scores – associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacological and genetic studies suggest the importance of the dopaminergic, serotonergic, and noradrenergic systems in the pathogenesis of Attention Deficit Hyperactivity Disorder (ADHD) and Disruptive Behavior Disorder (DBD). We have, in a population-based sample, studied associations between dimensions of the ADHD/DBD phenotype and Monoamine Oxidase B (MAO-B) activity in platelets and polymorphisms in two serotonergic genes: the Monoamine Oxidase A Variable Number of Tandem Repeats (MAO-A VNTR) and the 5-Hydroxytryptamine Transporter gene-Linked Polymorphic Region (5-HTT LPR).</p> <p>Methods</p> <p>A population-based sample of twins, with an average age of 16 years, was assessed for ADHD/DBD with a clinical interview; Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL). Blood was drawn from 247 subjects and analyzed for platelet MAO-B activity and polymorphisms in the MAO-A and 5-HTT genes.</p> <p>Results</p> <p>We found an association in girls between low platelet MAO-B activity and symptoms of Oppositional Defiant Disorder (ODD). In girls, there was also an association between the heterozygote long/short 5-HTT LPR genotype and symptoms of conduct disorder. Furthermore the heterozygote 5-HTT LPR genotype in boys was found to be associated with symptoms of Conduct Disorder (CD). In boys, hemizygosity for the short MAO-A VNTR allele was associated with disruptive behavior.</p> <p>Conclusion</p> <p>Our study suggests that the serotonin system, in addition to the dopamine system, should be further investigated when studying genetic influences on the development of Disruptive Behavior Disorders.</p

    Lumbar segmental mobility disorders: comparison of two methods of defining abnormal displacement kinematics in a cohort of patients with non-specific mechanical low back pain

    Get PDF
    BACKGROUND: Lumbar segmental rigidity (LSR) and lumbar segmental instability (LSI) are believed to be associated with low back pain (LBP), and identification of these disorders is believed to be useful for directing intervention choices. Previous studies have focussed on lumbar segmental rotation and translation, but have used widely varying methodologies. Cut-off points for the diagnosis of LSR & LSI are largely arbitrary. Prevalence of these lumbar segmental mobility disorders (LSMDs) in a non-surgical, primary care LBP population has not been established. METHODS: A cohort of 138 consecutive patients with recurrent or chronic low back pain (RCLBP) were recruited in this prospective, pragmatic, multi-centre study. Consenting patients completed pain and disability rating instruments, and were referred for flexion-extension radiographs. Sagittal angular rotation and sagittal translation of each lumbar spinal motion segment was measured from the radiographs, and compared to a reference range derived from a study of 30 asymptomatic volunteers. In order to define reference intervals for normal motion, and define LSR and LSI, we approached the kinematic data using two different models. The first model used a conventional Gaussian definition, with motion beyond two standard deviations (2sd) from the reference mean at each segment considered diagnostic of rotational LSMD and translational LSMD. The second model used a novel normalised within-subjects approach, based on mean normalised contribution-to-total-lumbar-motion. An LSMD was then defined as present in any segment that contributed motion beyond 2sd from the reference mean contribution-to-normalised-total-lumbar-motion. We described reference intervals for normal segmental mobility, prevalence of LSMDs under each model, and the association of LSMDs with pain and disability. RESULTS: With the exception of the conventional Gaussian definition of rotational LSI, LSMDs were found in statistically significant prevalences in patients with RCLBP. Prevalences at both the segmental and patient level were generally higher using the normalised within-subjects model (2.8 to 16.8% of segments; 23.3 to 35.5% of individuals) compared to the conventional Gaussian model (0 to 15.8%; 4.7 to 19.6%). LSMDs are associated with presence of LBP, however LSMDs do not appear to be strongly associated with higher levels of pain or disability compared to other forms of non-specific LBP. CONCLUSION: LSMDs are a valid means of defining sub-groups within non-specific LBP, in a conservative care population of patients with RCLBP. Prevalence was higher using the normalised within-subjects contribution-to-total-lumbar-motion approach

    Fusion Surgery for Lumbar Spinal Stenosis

    No full text

    Sequence Analysis and Homology Modeling Suggest That Primary Congenital Glaucoma on 2P21 Results From Mutations Disrupting Either the Hinge Region or The Conserved Core Structures of Cytochrome P4501B1

    Get PDF
    We recently reported three truncating mutations of the cytochrome P4501B1 gene (CYP1B1) in five families with primary congenital glaucoma (PCG) linked to the GLC3A locus on chromosome 2p21. This could be the first direct evidence supporting the hypothesis that members of the cytochrome P450 superfamily may control the processes of growth and differentiation. We present a comprehensive sequence analysis of the translated regions of the CYP1B1 gene in 22 PCG families and 100 randomly selected normal individuals. Sixteen mutations and six polymorphisms were identified, illustrating an extensive allelic heterogeneity. The positions affected by these changes were evaluated by building a three-dimensional homology model of the conserved C-terminal half of CYP1B1. These mutations may interfere with heme incorporation, by affecting the hinge region and/or the conserved core structures (CCS) that determine the proper folding and heme-binding ability of P450 molecules. In contrast, all polymorphic sites were poorly conserved and located outside the CCS. Northern hybridization analysis showed strong expression of CYP1B1. in the anterior uveal tract, which is involved in secretion of the aqueous humor and in regulation of outflow facility, processes that could contribute to the elevated intraocular pressure characteristic of PCG.WoSScopu

    Radiographic total disc replacement angle measurement accuracy using the Oxford Cobbometer: precision and bias

    No full text
    Total disc replacement (TDR) clinical success has been reported to be related to the residual motion of the operated level. Thus, accurate measurement of TDR range of motion (ROM) is of utmost importance. One commonly used tool in measuring ROM is the Oxford Cobbometer. Little is known however on its accuracy (precision and bias) in measuring TDR angles. The aim of this study was to assess the ability of the Cobbometer to accurately measure radiographic TDR angles. An anatomically accurate synthetic L4–L5 motion segment was instrumented with a CHARITE artificial disc. The TDR angle and anatomical position between L4 and L5 was fixed to prohibit motion while the motion segment was radiographically imaged in various degrees of rotation and elevation, representing a sample of possible patient placement positions. An experienced observer made ten readings of the TDR angle using the Cobbometer at each different position. The Cobbometer readings were analyzed to determine measurement accuracy at each position. Furthermore, analysis of variance was used to study rotation and elevation of the motion segment as treatment factors. Cobbometer TDR angle measurements were most accurate (highest precision and lowest bias) at the centered position (95.5%), which placed the TDR directly inline with the x-ray beam source without any rotation. In contrast, the lowest accuracy (75.2%) was observed in the most rotated and off-centered view. A difference as high as 4° between readings at any individual position, and as high as 6° between all the positions was observed. Furthermore, the Cobbometer was unable to detect the expected trend in TDR angle projection with changing position. Although the Cobbometer has been reported to be reliable in different clinical applications, it lacks the needed accuracy to measure TDR angles and ROM. More accurate ROM measurement methods need to be developed to help surgeons and researchers assess radiological success of TDRs
    corecore