178 research outputs found

    Growth performance, in vitro antioxidant properties and chemical composition of the halophyte Limonium algarvense Erben are strongly influenced by the irrigation salinity

    Get PDF
    Limonium algarvense Erben (sea lavender) is a halophyte species with potential to provide natural ingredients with in vitro antioxidant, anti-inflammatory, neuroprotective and antidiabetic properties. This study reports for the first time the 1) cultivation of sea lavender in greenhouse conditions under irrigation with freshwater (approx. 0 mM NaCl) and saline aquaculture wastewater (300 and 600 mM NaCl), and 2) the influence of the irrigation salinity on the plant performance (e.g growth, number of produced leaves and flowers), in vitro antioxidant properties [radical scavenging activity (DPPH and ABTS), ferric reducing antioxidant power (FRAP), metal chelating properties on copper (CCA) and iron (ICA)], toxicity (in vitro on three mammalian cell lines) and chemical composition (determined by LC-ESI-HRMS/MS). The freshwater-irrigated plants had better growth performance than those irrigated with saltwater. Extracts from wild plants, had the highest antioxidant activity, but those from cultivated ones kept high in vitro antioxidant properties and interesting chemical profile. The flowers' extracts of plants irrigated with 300 mM NaCl had the highest antioxidant activities against DPPH, whereas those from freshwater-irrigated plants were more active on ABTS, CCA and FRAP. Most of the extracts showed nil toxicity. The flowers' extracts displayed the highest diversity of compounds, mainly quercetin, apigenin, luteolin, naringenin and their glycoside derivatives. Moreover, their abundance varied with the irrigation salinity. These data indicate that sea lavender plants can be successfully cultivated in greenhouse conditions under fresh- and saltwater irrigation, maintaining interesting biological and chemical properties.Funding Agency Portuguese Foundation for Science and Technology Portuguese National Budget CCMAR/Multi/04326/2019 GreenVet project ALG-01-0145-FEDER-028876 XtrerneAquaCrops FA-05-2017-028 Lisboa-01-0145-FEDER-022125-RNEM-IST ID/QUI/00100/201 Portuguese Foundation for Science and Technology SFRH/BD/116604/2016 CEECIND/00425/2017info:eu-repo/semantics/publishedVersio

    The Triumph and Tragedy of Tobacco Control: A Tale of Nine Nations

    Get PDF
    The use of law and policy to limit tobacco consumption illustrates one of the greatest triumphs of public health in the late twentieth and early twenty-first centuries, as well as one of its most fundamental failures. Overall decreases in tobacco consumption throughout the developed world represent millions of saved lives and unquantifiable suffering averted. Yet those benefits have not been equally distributed. The poor and the undereducated have enjoyed fewer of the gains. In this review, we build on existing tobacco control scholarship and expand it both conceptually and comparatively. Our focus is the social gradient of smoking both within and across borders and how policy makers have been most effective in limiting smoking prevalence among the more privileged segments of society. To illustrate that point, we reference a range of literature on tobacco taxation, advertising, and public smoking in five economically advanced democracies—France, Germany, Japan, the United Kingdom, and the United States—and four less developed nations—India, China, Brazil, and South Africa—that together comprise 40% of the world’s population

    Interaction of smoking and occupational noise exposure on hearing loss: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noise is the most common hazardous agent at workplaces. Noise induced hearing loss (NIHL) has been known since the industrial revolution. Although NIHL is permanent, irreversible and frequent, it is preventable. The economic costs of NIHL have been estimated to be about billions of dollars. Besides, cigarette smoking is a common habit worldwide, and according to some recent studies smoking and noise may act in common causal pathways for hearing loss.</p> <p>Methods</p> <p>A cross-sectional study was designed to study the effect of smoking on NIHL in 206 male smoker workers and 206 male non-smoker workers in a large food-producing factory, in which workers were exposed to noise levels exceeding 85dBA. To determine noise exposure level, we used sound level measurements reported by industrial hygienists.</p> <p>A qualified audiologist assessed hearing acuity by using standardized audiometric procedures assuring at least 14 h of noise avoidance.</p> <p>Results</p> <p>We observed that the percentage of workers with hearing threshold differences of greater than or equal to 30 dB between 4000 Hz and 1000 Hz in both ears were 49.5% and 11.2% in smoker and non smoker groups, respectively (Odds ratio = 7.8, 95% CI = 4.7 – 13), and the percentage of workers with a hearing threshold of greater than 25dB at 4000 Hz in the better ear were 63.6% and 18.4% in smoker and non smoker groups, respectively. This difference was statistically significant after adjustment for age and exposure duration.</p> <p>Conclusion</p> <p>It can be concluded that smoking can accelerate noise induced hearing loss, but more research is needed to understand the underlying mechanisms. Accurate follow up of smoker workers who are exposed to noise levels exceeding 85 dBA is suggested. Smokers should periodically attend educational courses on "smoking cessation", especially in noisy workplaces.</p

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers

    Pre-hospital ECG for acute coronary syndrome in urban India: A cost-effectiveness analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with acute coronary syndrome (ACS) in India have increased pre-hospital delay and low rates of thrombolytic reperfusion. Use of ECG could reduce pre-hospital delay among patients who first present to a general practitioner (GP). We assessed whether performing ECG on patients with acute chest pain would improve long-term outcomes and be cost-effective.</p> <p>Methods</p> <p>We created a Markov model of urban Indian patients presenting to a GP with acute chest pain to compare a GP's performing an ECG versus not performing one. Variables describing the accuracy of a GP's referral decision in chest pain and ACS, ACS treatment patterns, the effectiveness of thrombolytic reperfusion, and costs were derived from Indian data where available and other developed world studies. The model was used to estimate the incremental cost-effectiveness ratio (ICER) of the intervention in 2007 US dollars per quality adjusted life years (QALY) gained.</p> <p>Results</p> <p>Under baseline assumptions, the ECG strategy cost an additional 12.65perQALYgainedcomparedtonoECG.SensitivityanalysesaroundthecostoftheECG,costofthrombolytic,andreferralaccuracyoftheGPyieldedICERsfortheECGstrategyrangingbetweencostsavingand12.65 per QALY gained compared to no ECG. Sensitivity analyses around the cost of the ECG, cost of thrombolytic, and referral accuracy of the GP yielded ICERs for the ECG strategy ranging between cost-saving and 1124/QALY. All results indicated the intervention is cost-effective under current World Health Organization recommendations.</p> <p>Conclusions</p> <p>While direct presentation to the hospital with acute chest pain is preferable, in urban Indian patients presenting first to a GP, an ECG performed by the GP is a cost-effective strategy to reduce disability and mortality. This strategy should be clinically studied and considered until improved emergency transport services are available.</p

    Analysis of the Fibroblast Growth Factor System Reveals Alterations in a Mouse Model of Spinal Muscular Atrophy

    Get PDF
    The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis

    Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΔ7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΔ7S270A, but not wild-type (WT) SMNΔ7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers

    Molecular Determinants of Survival Motor Neuron (SMN) Protein Cleavage by the Calcium-Activated Protease, Calpain

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of childhood mortality, caused by reduced levels of survival motor neuron (SMN) protein. SMN functions as part of a large complex in the biogenesis of small nuclear ribonucleoproteins (snRNPs). It is not clear if defects in snRNP biogenesis cause SMA or if loss of some tissue-specific function causes disease. We recently demonstrated that the SMN complex localizes to the Z-discs of skeletal and cardiac muscle sarcomeres, and that SMN is a proteolytic target of calpain. Calpains are implicated in muscle and neurodegenerative disorders, although their relationship to SMA is unclear. Using mass spectrometry, we identified two adjacent calpain cleavage sites in SMN, S192 and F193. Deletion of small motifs in the region surrounding these sites inhibited cleavage. Patient-derived SMA mutations within SMN reduced calpain cleavage. SMN(D44V), reported to impair Gemin2 binding and amino-terminal SMN association, drastically inhibited cleavage, suggesting a role for these interactions in regulating calpain cleavage. Deletion of A188, a residue mutated in SMA type I (A188S), abrogated calpain cleavage, highlighting the importance of this region. Conversely, SMA mutations that interfere with self-oligomerization of SMN, Y272C and SMNΔ7, had no effect on cleavage. Removal of the recently-identified SMN degron (Δ268-294) resulted in increased calpain sensitivity, suggesting that the C-terminus of SMN is important in dictating availability of the cleavage site. Investigation into the spatial determinants of SMN cleavage revealed that endogenous calpains can cleave cytosolic, but not nuclear, SMN. Collectively, the results provide insight into a novel aspect of the post-translation regulation of SMN
    corecore