71 research outputs found

    Comparisons and Combinations of Reactor and Long-Baseline Neutrino Oscillation Measurements

    Full text link
    We investigate how the data from various future neutrino oscillation experiments will constrain the physics parameters for a three active neutrino mixing model. The investigations properly account for the degeneracies and ambiguities associated with the phenomenology as well as estimates of experimental measurement errors. Combinations of various reactor measurements with the expected J-PARC (T2K) and NuMI offaxis (Nova) data, both with and without the increased flux associated with proton driver upgrades, are considered. The studies show how combinations of reactor and offaxis data can resolve degeneracies (e.g. the theta23 degeneracy) and give more precise information on the oscillation parameters. A primary purpose of this investigation is to establish the parameter space regions where CP violation can be discovered and where the mass hierarchy can be determined. It is found that such measurements, even with the augmented flux from proton driver upgrades, demand sin^2 (2 theta13) be fairly large and in the range where it is measurable by reactor experiments.Comment: 25 pages, 13 figures, fixed typos; 25 pages, 13 figures, updated content, references; previous 22 pages, 12 figures, added references and fixed reference display proble

    The LSND and MiniBooNE Oscillation Searches at High Δm2\Delta m^2

    Get PDF
    This paper reviews the results of the LSND and MiniBooNE experiments. The primary goal of each experiment was to effect sensitive searches for neutrino oscillations in the mass region with Δm21\Delta m^2 \sim 1 eV2^2. The two experiments are complementary, and so the comparison of results can bring additional information with respect to models with sterile neutrinos. Both experiments obtained evidence for νˉμνˉe\bar \nu_\mu \rightarrow \bar \nu_e oscillations, and MiniBooNE also observed a νμνe\nu_\mu \rightarrow \nu_e excess. In this paper, we review the design, analysis, and results from these experiments. We then consider the results within the global context of sterile neutrino oscillation models. The final data sets require a more extended model than the simple single sterile neutrino model imagined at the time that LSND drew to a close and MiniBooNE began. We show that there are apparent incompatibilities between data sets in models with two sterile neutrinos. However, these incompatibilities may be explained with variations within the systematic error. Overall, models with two (or three) sterile neutrinos seem to succeed in fitting the global data, and they make interesting predictions for future experiments.Comment: Posted with permission from the Annual Review of Nuclear and Particle Science, Volume 63. \c{opyright} 2013 by Annual Reviews, http://www.annualreviews.or

    Cost Estimates for the KPipe Experiment

    Get PDF
    We present estimates for the cost of the KPipe experiment. Excluding the cost of civil engineering, the total cost comes to 4.6 million USD. This report supports statements in arXiv article 1506.05811

    Dipole-Coupled Neutrissimo Explanations of the MiniBooNE Excess Including Constraints from MINERvA Data

    Full text link
    We revisit models of heavy neutral leptons (neutrissimos) with transition magnetic moments as explanations of the 4.8σ4.8\sigma excess of electron-like events at MiniBooNE. We perform a detailed Monte Carlo-based analysis to re-examine the preferred regions in the model parameter space to explain MiniBooNE, considering also potential contributions from oscillations due to an eV-scale sterile neutrino. We then derive robust constraints on the model using neutrino-electron elastic scattering data from MINERvA. We find that MINERvA rules out a large region of parameter space, but allowed solutions exist at the 2σ2\sigma confidence level. A dedicated MINERvA analysis would likely be able to probe the entire region of preference of MiniBooNE in this model.Comment: 14 page

    Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    Get PDF
    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models

    Neutral currents and tests of three-neutrino unitarity in long-baseline experiments

    Full text link
    We examine a strategy for using neutral current measurements in long-baseline neutrino oscillation experiments to put limits on the existence of more than three light, active neutrinos. We determine the relative contributions of statistics, cross section uncertainties, event misidentification and other systematic errors to the overall uncertainty of these measurements. As specific case studies, we make simulations of beams and detectors that are like the K2K, T2K, and MINOS experiments. We find that the neutral current cross section uncertainty and contamination of the neutral current signal by charge current events allow a sensitivity for determining the presence of sterile neutinos at the 0.10--0.15 level in probablility.Comment: 24 pages, Latex2e, uses graphicx.sty, 2 postscript figures. Submitted to the Neutrino Focus Issue of New Journal Physics at http://www.njp.or

    Mechanisms of the reaction pi^-p --> a^0_0(980)n --> p-^0 eta n at high energies

    Full text link
    The main dynamical mechanisms of the reaction πpa00(980)nπ0ηn\pi^-p \rightarrow a^0_0 (980)n \rightarrow \pi^0\eta n at high energies, currently investigated at Serpukhov and Brookhaven, are considered in detail. It is shown that the observed forward peak in its differential cross section can be explained within the framework of the Regge pole model only by the conspiring ρ2\rho_2 Regge pole exchange. The tentative estimates of the absolute πpa00(980)nπ0ηn\pi^-p \rightarrow a^0_0(980)n \rightarrow \pi^0\eta n reaction cross section at Plabπ=18P_{lab}^{\pi^-} = 18 GeV/c are obtained: σ200\sigma\approx200 nb and, in the forward direction, dσ/dt940d\sigma/dt\approx940 nb/GeV2^2. The contribution of the one pion exchange, which is forbidden by GG-parity and which can rise owing to the f00(980)a00(980)f^0_0(980)-a^0_0(980) mixing, is also estimate. A role of the Regge cuts in the non-flip helicity amplitude is briefly examined and a conclusion is made that the contributions of the cuts have to be inessential in comparison with the conspiring ρ2\rho_2 Regge pole exchange.Comment: 14 pages, Latex, 2 ps figure

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore