86 research outputs found

    The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images.

    Get PDF
    BackgroundThe effects of reduced radiation dose CT for the generation of maxillofacial bone STL models for 3D printing is currently unknown. Images of two full-face transplantation patients scanned with non-contrast 320-detector row CT were reconstructed at fractions of the acquisition radiation dose using noise simulation software and both filtered back-projection (FBP) and Adaptive Iterative Dose Reduction 3D (AIDR3D). The maxillofacial bone STL model segmented with thresholding from AIDR3D images at 100 % dose was considered the reference. For all other dose/reconstruction method combinations, a "residual STL volume" was calculated as the topologic subtraction of the STL model derived from that dataset from the reference and correlated to radiation dose.ResultsThe residual volume decreased with increasing radiation dose and was lower for AIDR3D compared to FBP reconstructions at all doses. As a fraction of the reference STL volume, the residual volume decreased from 2.9 % (20 % dose) to 1.4 % (50 % dose) in patient 1, and from 4.1 % to 1.9 %, respectively in patient 2 for AIDR3D reconstructions. For FBP reconstructions it decreased from 3.3 % (20 % dose) to 1.0 % (100 % dose) in patient 1, and from 5.5 % to 1.6 %, respectively in patient 2. Its morphology resembled a thin shell on the osseous surface with average thickness <0.1 mm.ConclusionThe residual volume, a topological difference metric of STL models of tissue depicted in DICOM images supports that reduction of CT dose by up to 80 % of the clinical acquisition in conjunction with iterative reconstruction yields maxillofacial bone models accurate for 3D printing

    Differential mortality in Iran

    Get PDF
    Background: Among the available data provided by health information systems, data on mortality are commonly used not only as health indicators but also as socioeconomic development indices. Recognizing that in Iran accurate data on causes of death were not available, the Deputy of Health in the Ministry of Health and Medical Education (MOH&ME) established a new comprehensive system for death registration which started in one province (Bushehr) as a pilot in 1997, and was subsequently expanded to include all other provinces, except Tehran province. These data can be used to investigate the nature and extent of differences in mortality in Iran. The objective of this paper is to estimate provincial differences in the level of mortality using this death registration system. Methods: Data from the death registration system for 2004 for each province were evaluated for data completeness, and life tables were created for provinces after correction for under-enumeration of death registration. For those provinces where it was not possible to adjust the data on adult deaths by using the Brass Growth Balance method, adult mortality was predicted based on adult literacy using information from provinces with reliable data. Results: Child mortality (risk of a newborn dying before age 5, or q) in 2004 varied between 47 per 1000 live births for both sexes in Sistan and Baluchistan province, and 25 per 1000 live births in Tehran and Gilan provinces. For adults, provincial differences in mortality were much greater for males than females. Adult mortality (risk of dying between ages 15 and 60, or 45q15) for females varied between 0.133 in Kerman province and 0.117 in Tehran province; for males the range was from 0.218 in Kerman to 0.149 in Tehran province. Life expectancy for females was highest in Tehran province (73.8 years) and lowest in Sistan and Baluchistan (70.9 years). For males, life expectancy ranged from 65.7 years in Sistan and Baluchistan province to 70.9 years in Tehran. Conclusion: Substantial differences in survival exist among the provinces of Iran. While the completeness of the death registration system operated by the Iranian MOH&ME appears to be acceptable in the majority of provinces, further efforts are needed to improve the quality of data on mortality in Iran, and to expand death registration to Tehran province

    Toward point-of-care microchip profiling of proteins

    No full text

    A two-step stochastic approach for operating rooms scheduling in multi-resource environment

    No full text
    Planning and scheduling of operating rooms (ORs) is important for hospitals to improve efficiency and achieve high quality of service. Due to significant uncertainty in surgery durations, scheduling of ORs can be very challenging. In this paper, surgical case scheduling problem with uncertain duration of surgeries in multi resource environment is investigated. We present a two-stage stochastic mixed-integer programming model, named SOS, with the objective of total ORs idle time and overtime. Also, in this paper a two-step approach is proposed for solving the model based on the L-shaped algorithm. Proposing the model in a multi resources environment with considering real-life limitations in academic hospitals and developing an approach for solving this stochastic model efficiently form the main contributions of this paper. The model is evaluated through several numerical experiments based on real data from Hasheminejad Kidney Center (HKC) in Iran. The solutions of SOS are compared with the deterministic solutions in several real instances. Numerical results show that SOS enjoys a better performance in 97 of the cases. Furthermore, the results of comparing with actual schedules applied in HKC reveal a notable reduction of OR idle time and over time which illustrate the efficiency of the proposed model in practice. © 2019, Springer Science+Business Media, LLC, part of Springer Nature

    Integrated microfluidic system for proteomics using mixed-scale structures and MALDI-TOF-MS

    No full text
    A typical sample processing pipeline for proteomics entails a series of laborious and low throughput steps that often results in long analysis times and sample loss, thereby affecting the overall efficiency and outcome of the measurement. We have assembled a polymerbased microfluidic system that includes most of the protein processing steps into a single wafer and can be interfaced to several different mass spectrometer platforms for protein identification. The system was fabricated via micro-replication technologies from polymers and possessed the ability to analyze ∼900 proteins in a single sample in an automated fashion with a total processing time \u3c1 h. © 2006 Society for Chemistry and Micro-Nano Systems
    corecore