6,128 research outputs found

    'How to feel safe': international students study migration

    Get PDF
    A variety of institutional and representational mechanisms are used in the construction of 'international students' and other 'migrants' or 'ethnic minorities' as two distinctive social categories. As part of these construction processes, the individuals affiliated with each group are located in different positions within the matrix of social power relations: they are granted with differential abilities to exercise their right to freedom of movement, and play different roles in the process of knowledge production. This article will explore how these processes occur in a specific context, through an autoethnographic account of the experiences of the author as an international student at the University of Amsterdam. This account suggests a thematic and methodological alternative to the safe position that the academic training as prospective migration scholars offers to students

    Lower bounds for adaptive linearity tests

    Get PDF
    Linearity tests are randomized algorithms which have oracle access to the truth table of some function f, and are supposed to distinguish between linear functions and functions which are far from linear. Linearity tests were first introduced by (Blum, Luby and Rubenfeld, 1993), and were later used in the PCP theorem, among other applications. The quality of a linearity test is described by its correctness c - the probability it accepts linear functions, its soundness s - the probability it accepts functions far from linear, and its query complexity q - the number of queries it makes. Linearity tests were studied in order to decrease the soundness of linearity tests, while keeping the query complexity small (for one reason, to improve PCP constructions). Samorodnitsky and Trevisan (Samorodnitsky and Trevisan 2000) constructed the Complete Graph Test, and prove that no Hyper Graph Test can perform better than the Complete Graph Test. Later in (Samorodnitsky and Trevisan 2006) they prove, among other results, that no non-adaptive linearity test can perform better than the Complete Graph Test. Their proof uses the algebraic machinery of the Gowers Norm. A result by (Ben-Sasson, Harsha and Raskhodnikova 2005) allows to generalize this lower bound also to adaptive linearity tests. We also prove the same optimal lower bound for adaptive linearity test, but our proof technique is arguably simpler and more direct than the one used in (Samorodnitsky and Trevisan 2006). We also study, like (Samorodnitsky and Trevisan 2006), the behavior of linearity tests on quadratic functions. However, instead of analyzing the Gowers Norm of certain functions, we provide a more direct combinatorial proof, studying the behavior of linearity tests on random quadratic functions..

    MDS matrices over small fields: A proof of the GM-MDS conjecture

    Full text link
    An MDS matrix is a matrix whose minors all have full rank. A question arising in coding theory is what zero patterns can MDS matrices have. There is a natural combinatorial characterization (called the MDS condition) which is necessary over any field, as well as sufficient over very large fields by a probabilistic argument. Dau et al. (ISIT 2014) conjectured that the MDS condition is sufficient over small fields as well, where the construction of the matrix is algebraic instead of probabilistic. This is known as the GM-MDS conjecture. Concretely, if a k×nk \times n zero pattern satisfies the MDS condition, then they conjecture that there exists an MDS matrix with this zero pattern over any field of size Fn+k1|\mathbb{F}| \ge n+k-1. In recent years, this conjecture was proven in several special cases. In this work, we resolve the conjecture

    Correlation Testing for Affine Invariant Properties on Fpn\mathbb{F}_p^n in the High Error Regime

    Full text link
    Recently there has been much interest in Gowers uniformity norms from the perspective of theoretical computer science. This is mainly due to the fact that these norms provide a method for testing whether the maximum correlation of a function f:FpnFpf:\mathbb{F}_p^n \rightarrow \mathbb{F}_p with polynomials of degree at most dpd \le p is non-negligible, while making only a constant number of queries to the function. This is an instance of {\em correlation testing}. In this framework, a fixed test is applied to a function, and the acceptance probability of the test is dependent on the correlation of the function from the property. This is an analog of {\em proximity oblivious testing}, a notion coined by Goldreich and Ron, in the high error regime. In this work, we study general properties which are affine invariant and which are correlation testable using a constant number of queries. We show that any such property (as long as the field size is not too small) can in fact be tested by Gowers uniformity tests, and hence having correlation with the property is equivalent to having correlation with degree dd polynomials for some fixed dd. We stress that our result holds also for non-linear properties which are affine invariant. This completely classifies affine invariant properties which are correlation testable. The proof is based on higher-order Fourier analysis. Another ingredient is a nontrivial extension of a graph theoretical theorem of Erd\"os, Lov\'asz and Spencer to the context of additive number theory.Comment: 43 pages. A preliminary version of this work appeared in STOC' 201

    Probabilistic existence of regular combinatorial structures

    Full text link
    We show the existence of regular combinatorial objects which previously were not known to exist. Specifically, for a wide range of the underlying parameters, we show the existence of non-trivial orthogonal arrays, t-designs, and t-wise permutations. In all cases, the sizes of the objects are optimal up to polynomial overhead. The proof of existence is probabilistic. We show that a randomly chosen structure has the required properties with positive yet tiny probability. Our method allows also to give rather precise estimates on the number of objects of a given size and this is applied to count the number of orthogonal arrays, t-designs and regular hypergraphs. The main technical ingredient is a special local central limit theorem for suitable lattice random walks with finitely many steps.Comment: An extended abstract of this work [arXiv:1111.0492] appeared in STOC 2012. This version expands the literature discussio
    corecore