38 research outputs found

    Numerical investigation on rock fragmentation under decoupled charge blasting

    Get PDF
    Blasting using decoupled charge is extensively applied in rock excavation and rock fragmentation. In this study, the rock fragmentation induced by blasting using decoupled charge is investigated by combined finite element modelling and image-processing. After calibrating the numerical model developed in LS-DYNA against the fragment morphology and fragmentation size distribution (FSD) in three air-coupling blasts and three water-coupling blasts, a series of cubic single-hole models are constructed to simulate rock cracking induced by decoupled charge blasting with various decoupling ratios, distinct coupling mediums and different decoupled charge modes. The simulated fracture networks are obtained by blanking the damaged elements whose damage level is over the threshold of crack formation, and the resulting crack patterns are image-processed using ImageJ to identify fragment size. Then, the blast-created FSDs are characterized by a three-parameter generalized extreme value function, and the FSDs with decoupling ratios, coupling mediums and different decoupled charge modes are quantitatively analyzed and compared. The results show that rock fragmentation becomes finer and the FSD range gets narrower with the decrease in decoupling ratio. Meanwhile, smaller fragment sizes and narrower FSD spans are obtained when changing coupling material from air to water and altering radial decoupling to axial decoupling.acceptedVersio

    Identifying Mis-Configured Author Profiles on Google Scholar Using Deep Learning

    Get PDF
    Google Scholar has been a widely used platform for academic performance evaluation and citation analysis. The issue about the mis-configuration of author profiles may seriously damage the reliability of the data, and thus affect the accuracy of analysis. Therefore, it is important to detect the mis-configured author profiles. Dealing with this issue is challenging because the scale of the dataset is large and manual annotation is time-consuming and relatively subjective. In this paper, we first collect a dataset of Google Scholar's author profiles in the field of computer science and compare the mis-configured author profiles with the reliable ones. Then, we propose an integrated model that utilizes machine learning and node embedding to automatically detect mis-configured author profiles. Additionally, we conduct two application case studies based on the data of Google Scholar, i.e., outstanding scholar searching and university ranking, to demonstrate how the improved dataset after filtering out the mis-configured author profiles will change the results. The two case studies validate the importance and meaningfulness of the detection of mis-configured author profiles.Peer reviewe

    BlaPSZ-1, a novel AmpC gene identified from a Pantoea isolate

    Get PDF
    BackgroundPantoea species of the family Erwiniaceae are well-known plant pathogens and animal and human conditional pathogens. Due to the widespread and continuous use of antimicrobials, multidrug-resistant strains continue to emerge, making clinical treatment difficult; therefore, there is an increasing need to clarify the mechanisms of drug resistance.MethodsA rabbit anal fecal sample was collected by a swab and the streak plate method was used to isolate single colonies. The standard agar dilution method was used to determine the minimum inhibitory concentrations (MICs) against antimicrobials. The complete genome sequence of the bacterium was obtained using Next-Generation Sequencing platforms. The potential resistance gene was annotated based on the Comprehensive Antibiotic Resistance Database (CARD) and verified by molecular cloning. The β-lactamase PSZ-1 was expressed via the pCold I expression vector and its enzyme kinetic parameters were analyzed. The genetic environment and evolutionary process of the novel resistance gene-related sequences were analyzed by bioinformatic methods.ResultsThe isolate Pantoea endophytica X85 showed some degree of resistance to penicillins as well as cephalosporins. A novel AmpC resistance gene, designated blaPSZ-1 in this research, was identified to be encoded in the plasmid (pPEX85) of P. endophytica X85. BlaPSZ-1 showed resistance to penicillins and several first-, second-and third-generation cephalosporins as well as aztreonam, but it did not show resistance to the fourth-generation cephalosporins or carbapenems tested. Enzyme kinetic assays revealed that it could hydrolyze amoxicillin, penicillin G, cephalothin, and cefazolin, and its hydrolytic activity could be strongly inhibited by the inhibitor avibactam, which was generally consistent with antimicrobial susceptibility testing results. No hydrolytic activity was observed for third-generation cephalosporins or aztreonam.ConclusionIn this study, a novel AmpC β-lactamase gene, designated blaPSZ-1, was characterized and it was encoded in the plasmid of the bacterium P. endophytica X85. It shows resistance to penicillins and several cephalosporins. The discovery of novel drug resistance mechanisms can help guide the scientific use of drugs in animal husbandry and clinical practice, effectively avoiding the abuse of antimicrobials and thus preventing the further development and spread of bacterial resistance

    Identification and characterization of a novel chromosomal aminoglycoside 3’-O-phosphotransferase, APH(3′)-Id, from Kluyvera intermedia DW18 isolated from the sewage of an animal farm

    Get PDF
    BackgroundAminoglycosides, as important clinical antimicrobials, are used as second-line drugs for treating multidrug-resistant tuberculosis or combined with β-lactam drugs for treating severe infections such as sepsis. Aminoglycoside-modifying enzyme (AME) is the most important mechanism of aminoglycoside resistance and deserves more attention.MethodsThe bacterium Kluyvera intermedia DW18 was isolated from the sewage of an animal farm using the conventional method. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs) of antimicrobials. A novel resistance gene was cloned, and the enzyme was expressed. The kinetic parameters were measured by a SpectraMax M5 multifunctional microplate reader. Bioinformatic analysis was performed to reveal the genetic context of the aph(3′)-Id gene and its phylogenetic relationship with other AMEs.ResultsA novel aminoglycoside 3′-O-phosphotransferase gene designated aph(3′)-Id was identified in K. intermedia DW18 and shared the highest amino acid identity of 77.49% with the functionally characterized aminoglycoside 3′-O-phosphotransferase APH(3′)-Ia. The recombinant plasmid carrying the novel resistance gene (pMD19-aph(3′)-Id/E. coli DH5α) showed 1,024-, 512-, 128- and 16-fold increased MIC levels for kanamycin, ribostamycin, paromomycin and neomycin, respectively, compared with the reference strain DH5α. APH(3′)-Id showed the highest catalytic efficiency for ribostamycin [kcat/Km of (4.96 ± 1.63) × 105 M−1/s−1], followed by paromomycin [kcat/Km of (2.18 ± 0.21) × 105 M−1/s−1], neomycin [kcat/Km of (1.73 ± 0.20) × 105 M−1/s−1], and kanamycin [kcat/Km of (1.10 ± 0.18) × 105 M−1/s−1]. Three conserved functional domains of the aminoglycoside phosphotransferase family and ten amino acid residues responsible for the phosphorylation of kanamycin were found in the amino acid sequence of APH(3′)-Id. No mobile genetic element (MGE) was discovered surrounding the aph(3′)-Id gene.ConclusionIn this work, a novel aminoglycoside 3’-O-phosphotransferase gene designated aph(3′)-Id encoded in the chromosome of the environmental isolate Kluyvera intermedia DW18 was identified and characterized. These findings will help clinicians select effective antimicrobials to treat infections caused by pathogens with this kind of resistance gene

    Identification and characterization of a novel β-lactamase gene, blaAMZ–1, from Achromobacter mucicolens

    Get PDF
    BackgroundAchromobacter is a genus of gram-negative bacteria that can act as opportunistic pathogens. Recent studies have revealed that some species of Achromobacter show inherent resistance to β-lactams, but the resistance mechanisms of Achromobacter mucicolens have rarely been reported.MethodThe bacterium was isolated using standard laboratory procedures. The agar dilution method was used to determine the minimum inhibitory concentrations (MICs). Genome sequencing was performed using the PacBio RS II and Illumina HiSeq 2500 platforms, and the Comprehensive Antibiotic Resistance Database (CARD) was used to annotate the drug resistance genes. The localization of the novel β-lactamase AMZ-1 was determined, and its characteristics were determined via molecular cloning and enzyme kinetic analysis. The phylogenetic relationship and comparative genomic analysis of the resistance gene-related sequences were also analyzed.ResultAchromobacter mucicolens Y3, isolated from a goose on a farm in Wenzhou, showed resistance to multiple antibiotics, including penicillins and cephalosporins. BlaAMZ–1 showed resistance to amoxicillin, penicillin G, ampicillin, cephalothin and cefoxitin, and the resistance activity could be inhibited by β-lactamase inhibitors. Enzyme kinetic analysis results showed that AMZ-1 has hydrolytic activity against a wide range of substrates, including cephalothin, amoxicillin, penicillin G, and cefoxitin but not ampicillin. The hydrolytic activity of AMZ-1 was greatly inhibited by avibactam but much more weakly inhibited by tazobactam. Mobile genetic elements could not be found around the blaAMZ–1-like genes, which are conserved on the chromosomes of bacteria of the genus Achromobacter.ConclusionIn this study, a novel AmpC gene, blaAMZ–1, from the animal-origin bacterium A. mucicolens Y3 was identified and characterized. It conferred resistance to some penicillins and first- and second-generation cephalosporins. The identification of this novel resistance gene will be beneficial for the selection of effective antimicrobials to treat associated infections

    Modeling the lifetime of wireless sensor networks

    No full text
    We propose a novel model to formally define the lifetime of a wireless sensor network based on energy by considering the relationship between individual sensors and the whole sensor network, the importance of different sensors based on their positions, the link quality, and the connectivity and coverage of the sensor network. Using the proposed model, we have compared two types of query protocols, the direct query protocol and the indirect query protocol, in terms of both mathematical analysis and comprehensive simulation. The simulation results validate the correctness of the mathematical analysis and the effectiveness of the proposed lifetime model

    Asymmetry-aware link quality services in wireless sensor networks.

    No full text
    Abstract. Recent studies in wireless sensor networks (WSN) have observed that the irregular link quality is a common phenomenon, rather than an anomaly. The irregular link quality, especially link asymmetry, has significant impacts on the design of WSN protocols. In this paper, we propose two asymmetry-aware link quality services: the neighborhood link quality service (NLQS) and the link relay service (LRS). The novelty of the NLQS service is taking the link asymmetry into consideration to provide timeliness link quality and distinguishing the inbound and outbound neighbors with the support of LRS, which builds a relay framework to alleviate the effects of link asymmetry. To demonstrate the proposed link quality services, we design and implement two example applications, the shortest hops routing tree (SHRT) and the best path reliability routing tree (BRRT), on the TinyOS platform. We found that the performance of two example applications is improved substantially. More than 40% of nodes identify more outbound neighbors and the percentage of increased outbound neighbors is between 14% and 100%. In SHRT, more than 15% of nodes reduce hops of the routing tree and the percentage of reduced hops is between 14% and 100%. In BRRT, more than 16% of nodes improve the path reliability of the routing tree and the percentage of the improved path reliability is between 2% to 50%
    corecore