66 research outputs found

    Investigation of sensing membranes for QCM devices in gas sensing applications

    Get PDF
    The standard Quartz Crystal Resonator (QCR) and network analysis based methods in conjunction with curve fitting were used to investigate the sensing capability and characterize the properties of phthalocyanine films on vapour exposure. The measurement of frequency shift and resistance change (mass loading and film damping), caused by adsorption of organic vapour namely, Benzene, Hexane, Ethanol and Toluene were investigated. Confirmation of film properties using supplementary methods such as AFM, Ellipsometry and UV-visible spectrometer was also performed to provide a full characterization of the sensing membranes. The extracted values of Δƒ and ΔR from subsequent fitting of the spectra to the BVD model are observed on vapour exposure. A frequency shift (Δƒ) and change in magnitude (as related to ΔR of the BVD equivalent circuit) indicate changes in the films viscoelastic properties for the increasing concentrations of tested vapours. The sensitivity of the coating has been estimated from the slope of fitted trend line and gives values below LEL thresholds (the Lower explosive limit) and IDLH thresholds (Immediately Dangerous to Life or Health) for the ZnPcs films. The experimental results of the study demonstrate selected sensing membranes are easily applied through spin coating techniques evident from definitive shifts in resonance. Additionally when exposed to the target vapours tested, the film(s) exhibit fast and consistent responses, consequently giving significant potential for gas/vapour sensing applications. Changes in the film parameters have also been observed through the measurement of the admittance spectra. Shifts in both frequency and resistance are observed on exposures which indicate mass loading and changes in film viscosity caused by ad/absorption of the vapour. Response times appear to be quick and full recovery is observed. From the tested vapours, toluene gives the most significant frequency shift exhibiting the highest sensitivity for this compound; this can be attributed to relatively high saturated vapour pressure as compared to the other analytes. In addition, the film parameters extracted from this work were used to estimate the shear modulus parameters. It was found the shear modulus of viscous material (coating film) extracted electrical equivalent circuit parameters are dependent on film properties, thickness and analyte ad/absorption. Consequently, the QCR sensor can act iv as a gravimetric and non gravimetric sensitive device for thin film depending on load and adsorption characteristics. In most instances the studied film behaviour demonstrates a rubbery regime that was indicated from increase in resistance for the coating film at series resonant frequency typically. Consequently the calculation of change in film mass from frequency shift (Sauerbrey equation) is inaccurate except for suitably thin rigid films. A range of Phthalocyanine sensing membranes have been successfully evaluated; selected variants (mainly ZnPc) have given promising results to their viability as gas sensing membrane to detect a range of organic solvents at vapour concentrations below their lower explosive level, It was found suitably sensitive with detection limits in the low parts-per million ranges for the selected analytes. Furthermore, a comparison of gas sensor responses for the selected materials is included, and consequently a particular type of substituent is proposed as a suitable sensor coating for Quartz Crystal Resonator (QCR) gas sensor applications. Other phthalocyanine materials initially chosen proved less successful; demonstrating limited responsiveness to analytes ad/absorption and giving inconsistent results over the tested concentration range. Factors range from non-homogenous film surfaces to the structure and consequent suitability of the synthesised film(s). Moreover, further research is suggested to fully characterize the complete adsorption process with wide range of phthalocyanine material and various organic analytes

    The effect of endurance training on the level of tissue IL-6 and VEGF in mice with breast cancer

    Get PDF
    زمینه و هدف: تمرینات ورزش پتانسیلی در جهت پیشگیری از سرطان پستان دارد. هدف پژوهش حاضر بررسی اثرات پیشگیری و کمک درمانی تمرینات ورزشی بر سایتوکاین های درگیر در رگ زایی تومور سرطان پستان وابسته به گیرنده استروژن می باشد. روش بررسی: در این مطالعه مداخله ای 50 سر موش بالب سی ماده به طور تصادفی در چهار گروه قرار گرفتند. پس از آشناسازی با محیط دو گروه از موش ها به مدت 8 هفته تمرین استقامتی تداومی را انجام دادند و سپس سلول های سرطانی وابسته به استروژن (MC4-L2) به همه موش ها تزریق گردید. پس از آن یک گروه از موش های تمرین کرده و یک گروه از موش های تمرین نکرده به مدت 6 هفته، 5 روز در هفته تمرینات استقامتی را انجام دادند. حجم تومور به صورت هفتگی با کولیس دیجیتالی اندازه گیری شد. در پایان موش ها قربانی شدند و بافت تومور برداشته و سطوح سایتوکاین های اینترلوکین 6 (IL-6) و فاکتور رشد اپی تلیال عروق (VEGF) با روش الایزا اندازه گیری شد. یافته ها: بین گروه ها در میزان مقادیر IL-6 و VEGF و میزان رشد تومور تفاوت معناداری وجود داشت (001/0PP). نتیجه گیری: با توجه به افت مقادیر IL-6 و VEGF در گروه هایی که قبل از سرطانی شدن و پس از سرطانی شدن تمرینات ورزشی را انجام دادند؛ می توان گفت که تمرینات ورزشی علاوه بر نقش پیشگیرانه بسیار موثر، دارای نقش درمانی در تومورهای وابسته به گیرنده استروژن نیز می باشند

    Effect of dietary mannan oligosaccharide on growth performance, survival, body composition and intestinal microflora in great sturgeon juvenile (Huso huso Linnaeus, 1754)

    Get PDF
    The effect of dietary mannan oligosaccharide (MOS; active MOS®) on growth, survival, body composition and intestinal microflora in giant sturgeon juvenile (Huso huso) were investigated for 46 days. Basal diet were supplemented with 0 (control), 2 and 4 g/kg MOS in a totally randomized design trial in triplicate groups. The experiment was carried out in 900 L fiberglass tanks. Fifteen juveniles beluga with initially average weight of 46.89 ± 0.57 g were stocked and fed to satiation daily.Data was analysed by regression analysis and pearson correlation test. There were no significant differences in growth and feeding parameters between fish fed control and MOS supplementation diets (P>0.05), but group treated with 4 g/kg MOS showed significant differences in food intake (P0.05). Fish treated with 2 g/kg MOS showed significant differences in fat content of muscle tissue (P0.05) were recorded. No significant difference was observed in intestinal lactic acid bacteria among the groups (P>0.05). The experiment indicated that the prebiotic mannan oligosaccharide didn’t influence the growth performance in beluga juvenile and it is not appropriate for supplementation in the diet of this cultured species

    Improving the Antioxidant Activities of Sweet Basil (Ocimum basilicum L.) under the Influence of Different Species of Mycorrhiza under Water Stress

    Get PDF
    Introduction  Medicinal plants have long had a special role in the traditional ‎agricultural system of Iran and the use of these plants as medicine to prevent and treat diseases has been considered by ‎traditional medicine experts since ancient times. Medicinal plants with rich sources of secondary metabolites provide the ‎basic active ingredients of many medicines. Although the biosynthesis of secondary metabolites is genetically controlled, ‎but their construction is strongly influenced by environmental factors. One of the important climatic factors that affect the ‎distribution of plants around the world and can cause morphological, physiological and biochemical changes in the plant is ‎the lack of available water. Basil seems to show little resistance to water stress. For this reason, there is a need for protective mechanisms for the ‎basil plant against stress due to water shortage. Plants are able to reduce or eliminate the effects of water shortage ‎stress by coexisting with a number of soil microorganisms. Inoculation of the plants with Arbuscular mycorrhizal fungi (AMF) has been exploited as an applicable strategy for reducing detrimental effects of water deficit stress. Present study was performed to evaluate the effects of three AMF on some physiological responses of Ocimum basilicum under water deficit stress.   Materials and Methods  The pot experiments were conducted as factorial based on completely randomized design blocks with three replications. The experimental factors were three AMF namely Glomus etunicatum, Glomus mosseae and Glomus intraradices and various soil moisture including severe stress, moderate stress, mild stress. Water stress was applied from the beginning to the end of flowering stage. After flowering stage, plants ‎were harvested and traits such as total phenols and flavonoids, antioxidant ‎capacity (DPPH), malondialdehyde (MDA), catalase and peroxidase enzymes were measured. To analyze the data, first the test of data normality and uniformity of variance within the treatment was performed and confirmed. The mean of treatments was compared by Duncan test at the level of 5% probability. SAS software (Ver. 9.3) was used to analyze the data and Excel software was used to draw the graphs.   Results and Discussion  The results of analysis of variance of the effect of mycorrhiza fungus and soil moisture on the studied parameters show that the effect of different levels of soil moisture on all traits was significant. The results of analysis of variance also showed that the effect of mycorrhiza on phenol and total flavonoids, antioxidant activity, catalase and peroxidase and malondialdehyde was significant at the level of one percent probability. According to the results of analysis of variance, the interaction effect of mycorrhiza on soil moisture on antioxidant activity was significant at 5% probability level and on total phenols and flavonoids, malondialdehyde, catalase and peroxidase at 1% probability level. Results showed that AMFs improve activity of catalase and peroxidase, antioxidant capacity and total phenols which led to decrease malondialdehyde content. Antioxidants as physiologically active compounds play an important role in plant resistance to stress. Increased oxygen species due to dehydration stress are a warning sign for plants and increase the activity of antioxidant enzymes. The plant's defense system increases the production of antioxidant enzymes to neutralize toxic oxygen forms, and fungi improve the intensity of this increase, which may be due to the chemical structure of the metal isoenzymes copper, zinc, and manganese. Factors sent to make antioxidant enzymes also contain the elements zinc and calcium. Mycorrhizal fungi increase the absorption of nutrients by sending more hormonal factors and increasing the activity of enzymes, all of which can be effective in increasing the activity of antioxidant enzymes.   Conclusion  When plants are exposed to dehydration stress, reactive oxygen species in them increase. The expression of antioxidant genes and the activity of antioxidants to eliminate reactive oxygen species are increased and the antioxidant defense system is improved and the tolerance to dehydration stress in the plant is increased. Scientists believe that peroxidase is involved in metabolic processes such as hormone catabolism, defense against pathogens, phenol oxidation, binding to cell structural proteins and cell wall polysaccharides. Present study revealed that application of AMFs can be good strategy for reducing harmful effects of water deficit stress in plants. Research has also shown that impregnating seeds with mycorrhiza increases antioxidants and reduces the amount of reactive oxygen species, a characteristic of resistance induction that occurs by this antagonist.   ‎   

    CD8+ T Cells and IFN-γ Mediate the Time-Dependent Accumulation of Infected Red Blood Cells in Deep Organs during Experimental Cerebral Malaria

    Get PDF
    Background: Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood. Methods and Findings: Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8 + T cells and IFN-c drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4 + T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-a did not influence the early increase of total parasite biomass and IRBC accumulation in different organs. Conclusions: CD8 + T cells and IFN-c are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues

    Hydrology and hydrobiology and environmental pollutions in lower than 10 meters depths of Caspian Sea

    Get PDF
    The present project in related to survey of factors and hydrology and hydrochemical features (water temperature, dissolve oxygen saturation, pH, clearance, salinity, nitrogen, phosphorus and silicon) hydrobiology (zooplankton, phytoplankton, macrobenthos) and survey of bio environment pollution (oil, heavy metal, detergent) executed in lower 10m in different water larger in southern Caspian Sea in 2002-2003. For sampling 8 lines number were vertical on coast that selected from Astra in west to Gomishan in east in southern Caspian Sea basin. The result indicated the average physical factors such as pH were 8.11 and salinity12.12 ppt ,and disolve oxygen6.7 mg/l. Average chemical factors such as NO_2 , NO_3 and NH_4 were 1.2 µg/l, 25.7 µg/l, 13 µg/l respectively.Total nitogen and organic nitrogen and inorganic nitrogen were 690.2 µg/l , 667.6 µg/l , 41.6 µg/l. Average silicat were recrded 266.35 µg/l . Total Phosphorus was observed 37.35 µg/l and average of organic Phosphorus concentration was and 20.25 µg/l .Average of Total organic matter (T.O.M) was 4.98% maximum amount were observed in Lisar and minimum in Nooshahr . Concentration of heavy metal during sampling were respectively ,Fe>Mn>Zn>Cr>Ph>Co>Cd>Cu. Maximum concentration of Fe were determined in winter in Nooshahr and Babolsar respectively 13/3 µg/l 17/1 µg/l. In many stations and different Season, the amount of heavy meta were lower standard of in marine water. The concentration of oil hydrocarborate (PAHs) in autumn was 0/13 ppb and in winter 0/12 ppb. The amount of (PAHs) in Southern Caspian Sea were Lower than other parts of Caspian Sea. The average of detergent concentration (LAS) was 0/036 µg/l that was two fold higher than determined in 2001. Total 107 species of phytoplankton belong to 5 phylum were identified. The numbers of species of phytoplankton groups were respectively, chrysophyta (42 species), cyanophyta (17 species), pyruphyta (17 species), chlorophyta (21 species) and euglenophyta (9 species). The maximum diversity of phytoplankton observed in summer and minimum in autumn. High diversity of chrysophta and cyanophyta observed in summer and phyrophyta and chrlophyta in spring. The composition of phytoplanhkton groups were respectively, chrysophyta (70%), phyrophyta (9%) and chlorophyta (7%) and euglonophyta (1%). Maximum density of phytoplankton was observed in autumn and minimum in winter. Total 19 species of Zooplankton were identified. Maximum diversity was observed in summer and minimum in winter. Zooplankton changes during sampling, showed amount of density of zooplankton in 5m were more than 10 m depths. Total (17 species macrobenthos were identified. The composition of macrobenthos groups were respectively , Annalida (92/7% ) , Bivalvia (2/7%) gumarida (108%) cumacea ( 1/5%) , Balanidae 103% . max . density were observed in Astara and min . in Sefied roud Average of density were 1218 0/851 ind /m^2 and biomass 14 15 g/m^2 High density were recorded in autumn and low density in winter . Correlation of phytoplankton and zooplankton with physicochemical parameter and also relation between total organic matter and sediment grain size were calculated.Ecological indicies (simpson diversity evenns diversity and shanoon-wiever diversity) were calculated for macrobenthos. Data were shown impact of cetenephora (Mnenemiopsis leidyi) on zooplankton and phytoplankton and macrobenthos density

    Inhibitory Effect of TNF-α on Malaria Pre-Erythrocytic Stage Development: Influence of Host Hepatocyte/Parasite Combinations

    Get PDF
    BACKGROUND: The liver stages of malaria parasites are inhibited by cytokines such as interferon-gamma or Interleukin (IL)-6. Binding of these cytokines to their receptors at the surface of the infected hepatocytes leads to the production of nitric oxide (NO) and radical oxygen intermediates (ROI), which kill hepatic parasites. However, conflicting results were obtained with TNF-alpha possibly because of differences in the models used. We have reassessed the role of TNF-alpha in the different cellular systems used to study the Plasmodium pre-erythrocytic stages. METHODS AND FINDINGS: Human or mouse TNF-alpha were tested against human and rodent malaria parasites grown in vitro in human or rodent primary hepatocytes, or in hepatoma cell lines. Our data demonstrated that TNF-alpha treatment prevents the development of malaria pre-erythrocytic stages. This inhibitory effect however varies with the infecting parasite species and with the nature and origin of the cytokine and hepatocytes. Inhibition was only observed for all parasite species tested when hepatocytes were pre-incubated 24 or 48 hrs before infection and activity was directed only against early hepatic parasite. We further showed that TNF-alpha inhibition was mediated by a soluble factor present in the supernatant of TNF-alpha stimulated hepatocytes but it was not related to NO or ROI. Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. CONCLUSIONS: Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. However, the nature of the cytokine-host cell-parasite combination must be carefully considered for extrapolation to the human infection

    Medulloblastoma Exome Sequencing Uncovers Subtype-Specific Somatic Mutations

    Get PDF
    Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma

    Universal Alcohol/Drug Screening in Prenatal Care: A Strategy for Reducing Racial Disparities? Questioning the Assumptions

    Get PDF
    Agencies and organizations promoting universal screening for alcohol and drug use in prenatal care argue that universal screening will reduce White versus Black racial disparities in reporting to Child Protective Services (CPS) at delivery. Yet, no published research has assessed the impact of universal screening on reporting disparities or explored plausible mechanisms. This review defines two potential mechanisms: Equitable Surveillance and Effective Treatment and identifies assumptions underlying each mechanism. It reviews published literature relating to each assumption. Research relating to assumptions underlying each mechanism is primarily inconclusive or contradictory. Thus, available research does not support the claim that universal screening for alcohol and drug use in prenatal care reduces racial disparities in CPS reporting at delivery. Reducing these reporting disparities requires more than universal screening

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
    corecore