85 research outputs found
The MOSDEF Survey: The Metallicity Dependence of X-Ray Binary Populations at z ∼ 2
Population synthesis models predict that high-mass X-ray binary (HMXB) populations produced in low-metallicity environments should be more X-ray luminous, a trend supported by studies of nearby galaxies. This trend may be responsible for the observed increase of the X-ray luminosity (L X) per star formation rate (SFR) with redshift due to the decrease of metallicity (Z) at fixed stellar mass as a function of redshift. To test this hypothesis, we use a sample of 79 z ∼ 2 star-forming galaxies with oxygen abundance measurements from the MOSDEF survey, which obtained rest-frame optical spectra for ∼1500 galaxies in the CANDELS fields at 1.37 < z < 3.80. Using Chandra data from the Chandra AEGIS-X Deep, Chandra Deep Field North, and Chandra Deep Field South surveys, we stack the X-ray data at the galaxy locations in bins of redshift and Z because the galaxies are too faint to be individually detected. In agreement with previous studies, the average L X/SFR of our z ∼ 2 galaxy sample is enhanced by ≈0.4-0.8 dex relative to local HMXB L X-SFR scaling relations. Splitting our sample by Z, we find that L X/SFR and Z are anticorrelated with 97% confidence. This observed Z dependence for HMXB-dominated galaxies is consistent with both the local L X-SFR-Z relation and a subset of population synthesis models. Although the statistical significance of the observed trends is weak owing to the low X-ray statistics, these results constitute the first direct evidence connecting the redshift evolution of L X/SFR and the Z dependence of HMXBs
Kiadói és nyomdai tevékenység a szerbek körében a középkor végén és az újkor hajnalán
We study the properties of 30 spectroscopically identified pairs of galaxies observed during the peak epoch of star formation in the universe. These systems are drawn from the MOSFIRE Deep Evolution Field (MOSDEF) Survey at 1.4 ≤ z ≤ 3.8, and are interpreted as early-stage galaxy mergers. Galaxy pairs in our sample are identified as two objects whose spectra were collected on the same Keck/MOSFIRE spectroscopic slit. Accordingly, all pairs in the sample have projected separations R proj ≤ 60 kpc. The velocity separation for pairs was required to be Δv ≤ 500 km s -1 , which is a standard threshold for defining interacting galaxy pairs at low redshift. Stellar mass ratios in our sample range from 1.1 to 550, with 12 ratios closer than or equal to 3:1, the common definition of a "major merger." Studies of merging pairs in the local universe indicate an enhancement in star formation activity and deficit in gas-phase oxygen abundance relative to isolated galaxies of the same mass. We compare the MOSDEF pairs sample to a control sample of isolated galaxies at the same redshift, finding no measurable SFR enhancement or metallicity deficit at fixed stellar mass for the pairs sample. The lack of significant difference between the average properties of pairs and control samples appears in contrast to results from low-redshift studies, although the small sample size and lower signal-to-noise of the high-redshift data limit definitive conclusions on redshift evolution. These results are consistent with some theoretical works, suggesting a reduced differential effect of precoalescence mergers on galaxy properties at high redshift - specifically that precoalescence mergers do not drive strong starbursts
The Line Emission Mapper (LEM) Probe Mission Concept
The Line Emission Mapper (LEM) is a Probe mission concept developed in response to NASA's Astrophysics Probe Explorer (APEX) Announcement of Opportunity. LEM has a single science instrument composed of a large-area, wide-field X-ray optic and a microcalorimeter X-ray imaging spectrometer in the focal plane. LEM is optimized to observe low-surface-brightness diffuse X-ray emission over a 30′ equivalent diameter field of view with 1.3 and 2.5 eV spectral resolution in the 0.2 − 2.0 keV band. Our primary scientific objective is to map the thermal, kinetic, and elemental properties of the diffuse gas in the extended X-ray halos of galaxies, the outskirts of galaxy clusters, the filamentary structures between these clusters, the Milky Way star-formation regions, the Galactic halo, and supernova remnants in the Milky Way and Local Group. The combination of a wide-field optic with 18′′ angular resolution end-to-end and a microcalorimeter array with 1.3 eV spectral resolution in a 5′ × 5′ inner array (2.5 eV outside of that) offers unprecedented sensitivity to extended low-surface-brightness X-ray emission. This allows us to study feedback processes, gas dynamics, and metal enrichment over seven orders of magnitude in spatial scales, from parsecs to tens of megaparsecs. LEM will spend approximately 11% of its five-year prime science mission performing an All-Sky Survey, the first all-sky X-ray survey at high spectral resolution. The remainder of the five-year science mission will be divided between directed science (30%) and competed General Observer science (70%). LEM and the NewAthena/XIFU are highly complementary, with LEM's optimization for soft X-rays, large FOV, 1.3 eV spectral resolution, and large grasp balancing the NewAthena/X-IFU's broadband sensitivity, large effective area, and unprecedented spectral resolving power at 6 keV. In this presentation, we will provide an overview of the mission architecture, the directed science driving the mission design, and the broad scope these capabilities offer to the entire astrophysics community
Recommended from our members
Global, regional, and national age-specific progress towards the 2020 milestones of the WHO End TB Strategy: a systematic analysis for the Global Burden of Disease Study 2021
Background
Global evaluations of the progress towards the WHO End TB Strategy 2020 interim milestones on mortality (35% reduction) and incidence (20% reduction) have not been age specific. We aimed to assess global, regional, and national-level burdens of and trends in tuberculosis and its risk factors across five separate age groups, from 1990 to 2021, and to report on age-specific progress between 2015 and 2020.
Methods
We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2021 (GBD 2021) analytical framework to compute age-specific tuberculosis mortality and incidence estimates for 204 countries and territories (1990–2021 inclusive). We quantified tuberculosis mortality among individuals without HIV co-infection using 22 603 site-years of vital registration data, 1718 site-years of verbal autopsy data, 825 site-years of sample-based vital registration data, 680 site-years of mortality surveillance data, and 9 site-years of minimally invasive tissue sample (MITS) diagnoses data as inputs into the Cause of Death Ensemble modelling platform. Age-specific HIV and tuberculosis deaths were established with a population attributable fraction approach. We analysed all available population-based data sources, including prevalence surveys, annual case notifications, tuberculin surveys, and tuberculosis mortality, in DisMod-MR 2.1 to produce internally consistent age-specific estimates of tuberculosis incidence, prevalence, and mortality. We also estimated age-specific tuberculosis mortality without HIV co-infection that is attributable to the independent and combined effects of three risk factors (smoking, alcohol use, and diabetes). As a secondary analysis, we examined the potential impact of the COVID-19 pandemic on tuberculosis mortality without HIV co-infection by comparing expected tuberculosis deaths, modelled with trends in tuberculosis deaths from 2015 to 2019 in vital registration data, with observed tuberculosis deaths in 2020 and 2021 for countries with available cause-specific mortality data.
Findings
We estimated 9·40 million (95% uncertainty interval [UI] 8·36 to 10·5) tuberculosis incident cases and 1·35 million (1·23 to 1·52) deaths due to tuberculosis in 2021. At the global level, the all-age tuberculosis incidence rate declined by 6·26% (5·27 to 7·25) between 2015 and 2020 (the WHO End TB strategy evaluation period). 15 of 204 countries achieved a 20% decrease in all-age tuberculosis incidence between 2015 and 2020, eight of which were in western sub-Saharan Africa. When stratified by age, global tuberculosis incidence rates decreased by 16·5% (14·8 to 18·4) in children younger than 5 years, 16·2% (14·2 to 17·9) in those aged 5–14 years, 6·29% (5·05 to 7·70) in those aged 15–49 years, 5·72% (4·02 to 7·39) in those aged 50–69 years, and 8·48% (6·74 to 10·4) in those aged 70 years and older, from 2015 to 2020. Global tuberculosis deaths decreased by 11·9% (5·77 to 17·0) from 2015 to 2020. 17 countries attained a 35% reduction in deaths due to tuberculosis between 2015 and 2020, most of which were in eastern Europe (six countries) and central Europe (four countries). There was variable progress by age: a 35·3% (26·7 to 41·7) decrease in tuberculosis deaths in children younger than 5 years, a 29·5% (25·5 to 34·1) decrease in those aged 5–14 years, a 15·2% (10·0 to 20·2) decrease in those aged 15–49 years, a 7·97% (0·472 to 14·1) decrease in those aged 50–69 years, and a 3·29% (–5·56 to 9·07) decrease in those aged 70 years and older. Removing the combined effects of the three attributable risk factors would have reduced the number of all-age tuberculosis deaths from 1·39 million (1·28 to 1·54) to 1·00 million (0·703 to 1·23) in 2020, representing a 36·5% (21·5 to 54·8) reduction in tuberculosis deaths compared to those observed in 2015. 41 countries were included in our analysis of the impact of the COVID-19 pandemic on tuberculosis deaths without HIV co-infection in 2020, and 20 countries were included in the analysis for 2021. In 2020, 50 900 (95% CI 49 700 to 52 400) deaths were expected across all ages, compared to an observed 45 500 deaths, corresponding to 5340 (4070 to 6920) fewer deaths; in 2021, 39 600 (38 300 to 41 100) deaths were expected across all ages compared to an observed 39 000 deaths, corresponding to 657 (–713 to 2180) fewer deaths.
Interpretation
Despite accelerated progress in reducing the global burden of tuberculosis in the past decade, the world did not attain the first interim milestones of the WHO End TB Strategy in 2020. The pace of decline has been unequal with respect to age, with older adults (ie, those aged >50 years) having the slowest progress. As countries refine their national tuberculosis programmes and recalibrate for achieving the 2035 targets, they could consider learning from the strategies of countries that achieved the 2020 milestones, as well as consider targeted interventions to improve outcomes in older age groups
Non-linear dynamic analysis of automotive suspension system incorporating rubber bump stops
Rubber bump stops are used in automotive suspension systems to absorb energy, limit the motion of wheels, and reduce vibrations. They are made from elastomeric materials that are non-linear and exhibit large deformation under loading. In the present paper, the bump stop used in a double-wishbone suspension system was analysed numerically to obtain the load–displacement curve and compared with experimental test data. The numerical analysis was done with a non-linear finite element (FE) model using ABAQUS software. The results showed good agreement between numerical and experimental data, with a difference of less than 2 per cent between them. Then dynamic analysis of the suspension system with the bump stop was done to recognize the stress and acceleration effects arising from use of this part in the system. For different vehicle velocities, the comparison between von Mises stress curves in two cases, with and without a bump stop on the lower control arm, showed higher stresses in the lower control arm in the presence of the bump stop and the comparison between acceleration curves showed lower acceleration in the lower control arm with the bump stop. Thus automotive engineers must pay attention to these effects to design suspension components correctly. </jats:p
- …
