23 research outputs found

    Seasonal variability of sea surface height in the coastal waters and deep basins of the Nordic Seas

    Get PDF
    Sea surface height measured by the Envisat radar altimeter over open ocean and from leads in sea ice are combined to generate a complete view of variability in the Nordic Seas, geographically and seasonally. The observed seasonal variability is decomposed using empirical orthogonal functions, and is consistent with seasonal variations in steric and dynamic forcing. Wintertime increase in sea surface height on the east Greenland shelf is hypothesised to be caused by wind-forced downwelling, which provides direct evidence for the regional play of coastal dynamics. High levels of eddy kinetic energy around the sea ice edge in Fram Strait, and off east Greenland and Svalbard are consistent with the interaction of the wind with the ice edge

    Mean Dynamic Topography of the Arctic Ocean

    Get PDF
    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths

    Identification of subglacial lakes using ERS-1 radar altimeter

    No full text

    Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre

    No full text
    The Arctic Oceanā€™s freshwater budget comprises contributions from river runoff, precipitation, evaporation, sea-ice and exchanges with the North Pacific and Atlantic1. More than 70,000?km3 of freshwater2 are stored in the upper layer of the Arctic Ocean, leading to low salinities in upper-layer Arctic sea water, separated by a strong halocline from warm, saline water beneath. Spatially and temporally limited observations show that the Arctic Oceanā€™s freshwater content has increased over the past few decades, predominantly in the west3, 4, 5. Models suggest that wind-driven convergence drives freshwater accumulation6. Here we use continuous satellite measurements between 1995 and 2010 to show that the dome in sea surface height associated with the western Arctic Beaufort Gyre has been steepening, indicating spin-up of the gyre. We find that the trend in wind field curlā€”a measure of spatial gradients in the wind that lead to water convergence or divergenceā€”exhibits a corresponding spatial pattern, suggesting that wind-driven convergence controls freshwater variability. We estimate an increase in freshwater storage of 8,000Ā±2,000?km3 in the western Arctic Ocean, in line with hydrographic observations4, 5, and conclude that a reversal in the wind field could lead to a spin-down of the Beaufort Gyre, and release of this freshwater to the Arctic Ocean
    corecore