81 research outputs found

    Mutational analysis of candidate genes in 24 amelogenesis imperfecta families

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72969/1/j.1600-0722.2006.00278.x.pd

    Influencia de un injerto en el perfil de ácidos grasos y algunas propiedades fisicoquímicas de la semilla y el aceite de semillas de sandía

    Get PDF
    This study aimed to investigate the effects of grafting on the fatty acid profile and some physicochemical properties of watermelon seed and seed oil. The ‘Crimson Tide’ cultivar was used as the scion while two wild watermelon (Citrullus lanatus var. citroides (A1 and A2)), one Lagenaria siceraria (A3) and one Cucurbita maxima Duchesne x Cucurbita moschata Duchesne (A4) were used as rootstocks. The use of rootstock significantly influenced the fatty acid profile and the physical parameters of seeds and seed oils. The highest linoleic acid ratio was found in the seed oil from A1 and A2, the oil from A3 had the highest oleic acid ratio. The results showed that the content and acid value in seed oils were improved, and that total phenolic compounds and antioxidant activity of both seed and oil were decreased by grafting. Wild rootstocks can be used in watermelon cultivation to obtain a watermelon seed which is rich in linoleic acid.El objetivo de este estudio fue investigar los efectos del injerto en el perfil de ácidos grasos y algunas propiedades fisicoquímicas de la semilla y el aceite de semillas de sandía. El cultivar ‘Crimson Tide’ se utilizó como vástago, mientras que dos sandías silvestres (Citrullus lanatus var. Citroides (A1 y A2)), una Lagenaria siceraria (A3) y una Cucurbita maxima Duchesne x Cucurbita moschata Duchesne (A4) se utilizaron como portainjertos. El uso de portainjertos influyó significativamente en el perfil de ácidos grasos y los parámetros físicos de semillas y aceites de semillas. La proporción de ácido linoleico más alta se encontró en el aceite de semillas de A1 y A2, el aceite de A3 tuvo la proporción de ácido oleico más alta. Los resultados mostraron que el contenido de aceite y el índice de acidez mejoró y los compuestos fenólicos totales y la actividad antioxidante tanto de la semilla como del aceite se redujeron mediante el injerto. Para obtener un aceite de semillas de sandía rico en ácido linoleico, se pueden utilizar portainjertos silvestres en el cultivo de sandía

    Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay

    Get PDF
    BACKGROUND: Congenital forms of hearing impairment can be caused by mutations in the estrogen related receptor beta (ESRRB) gene. Our initial linkage studies suggested the ESRRB locus is linked to high caries experience in humans. METHODS: We tested for association between the ESRRB locus and dental caries in 1,731 subjects, if ESRRB was expressed in whole saliva, if ESRRB was associated with the microhardness of the dental enamel, and if ESRRB was expressed during enamel development of mice. RESULTS: Two families with recessive ESRRB mutations and DFNB35 hearing impairment showed more extensive dental destruction by caries. Expression levels of ESRRB in whole saliva samples showed differences depending on sex and dental caries experience. CONCLUSIONS: The common etiology of dental caries and hearing impairment provides a venue to assist in the identification of individuals at risk to either condition and provides options for the development of new caries prevention strategies, if the associated ESRRB genetic variants are correlated with efficacy.Fil: Weber, Megan L.. University of Pittsburgh; Estados UnidosFil: Hsin, Hong Yuan. University of Pittsburgh; Estados UnidosFil: Kalay, Ersan. Karadeniz Technical University; TurquíaFil: Brožková, Dana Š. Charles University; República Checa. University Hospital Motol; República ChecaFil: Shimizu, Takehiko. Nihon University. School of Dentistry; JapónFil: Bayram, Merve. Medipol Istanbul University; TurquíaFil: Deeley, Kathleen. University of Pittsburgh; Estados UnidosFil: Küchler, Erika C.. University of Pittsburgh; Estados UnidosFil: Forella, Jessalyn. University of Pittsburgh; Estados UnidosFil: Ruff, Timothy D.. University of Pittsburgh; Estados UnidosFil: Trombetta, Vanessa M.. University of Pittsburgh; Estados UnidosFil: Sencak, Regina C.. University of Pittsburgh; Estados UnidosFil: Hummel, Michael. University of Pittsburgh; Estados UnidosFil: Briseño Ruiz, Jessica. University of Pittsburgh; Estados UnidosFil: Revu, Shankar K.. University of Pittsburgh; Estados UnidosFil: Granjeiro, José M.. Universidade Federal Fluminense; BrasilFil: Antunes, Leonardo S.. Universidade Federal Fluminense; BrasilFil: Antunes, Livia A.. Universidade Federal Fluminense; BrasilFil: Abreu, Fernanda V.. Universidade Federal Fluminense; BrasilFil: Costabel, Marcelo C.. Universidade Federal do Rio de Janeiro; BrasilFil: Tannure, Patricia N.. Veiga de Almeida University; Brasil. Salgado de Oliveira University; BrasilFil: Koruyucu, Mine. Istanbul University; TurquíaFil: Patir, Asli. Medipol Istanbul University; TurquíaFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mereb, Juan C.. Estudio Colaborativo Latino Americano de Malformaciones Congénitas; ArgentinaFil: Castilla, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orioli, Iêda M.. Universidade Federal do Rio de Janeiro; BrasilFil: Marazita, Mary L.. University of Pittsburgh; Estados UnidosFil: Ouyang, Hongjiao. University of Pittsburgh; Estados UnidosFil: Jayaraman, Thottala. University of Pittsburgh; Estados UnidosFil: Seymen, Figen. Istanbul University; TurquíaFil: Vieira, Alexandre R.. University of Pittsburgh; Estados Unido

    Fine-mapping of 5q12.1-13.3 unveils new genetic contributors to caries

    Get PDF
    Caries is a multifactorial disease and little is still known about the host genetic factors influencing susceptibility. Our previous genome-wide linkage scan has identified the interval 5q12.1–5q13.3 as linked to low caries susceptibility in Filipino families. Here we fine-mapped this region in order to identify genetic contributors to caries susceptibility. Four hundred and seventy-seven subjects from 72 pedigrees with similar cultural and behavioral habits and limited access to dental care living in the Philippines were studied. DMFT scores and genotype data of 75 single-nucleotide polymorphisms were evaluated in the Filipino families with the Family-Based Association Test. For replication purposes, a total 1,467 independent subjects from five different populations were analyzed in a case-control format. In the Filipino cohort, statistically significant and borderline associations were found between low caries experience and four genes spanning 13 million base pairs (PART1, ZSWIM6, CCNB1, and BTF3). We were able to replicate these results in some of the populations studied. We detected PART1 and BTF3 expression in whole saliva, and the expression of BTF3 was associated with caries experience. Our results suggest BTF3 may have a functional role in protecting against caries.Fil: Shimizu, T.. Nihon University of Dentistry; JapónFil: Deeley, K.. University of Pittsburgh; Estados UnidosFil: Briseño Ruiz, J.. University of Pittsburgh; Estados UnidosFil: Faraco Junior, I. M.. University of Pittsburgh; Estados UnidosFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; ArgentinaFil: Brancher, J. A.. Pontifical Catholic University of Paraná; BrasilFil: Pecharki, G. D.. Pontifical Catholic University of Paraná; BrasilFil: Küchler, E. C.. Universidade Federal Fluminense; BrasilFil: Tannure, P. N.. Universidade Federal do Rio de Janeiro; BrasilFil: Lips, A.. Universidade Federal do Rio de Janeiro; BrasilFil: Vieira, T. C. S.. Universidade Federal Fluminense; BrasilFil: Patir, A.. Istanbul Medipol Universit; TurquíaFil: Yildirim, M.. Istanbul University; TurquíaFil: Mereb, J. C.. Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno”; ArgentinaFil: Resick, J. M.. University of Pittsburgh; Estados UnidosFil: Brandon, C. A.. University of Pittsburgh; Estados UnidosFil: Cooper, M. E.. University of Pittsburgh; Estados UnidosFil: Seymen, F.. Istanbul University; TurquíaFil: Costa, M. C.. Universidade Federal do Rio de Janeiro; BrasilFil: Granjeiro, J. M.. Universidade Federal Fluminense; BrasilFil: Trevilatto, P. C.. Pontifical Catholic University of Paraná; BrasilFil: Orioli, I. M.. Universidade Federal do Rio de Janeiro; Brasil. Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno”; ArgentinaFil: Castilla, Eduardo Enrique. Instituto Oswaldo Cruz; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET.; ArgentinaFil: Marazita, M. L.. University of Pittsburgh; Estados UnidosFil: Vieira, A. R.. University of Pittsburgh; Estados Unido

    Enamel Formation Genes Influence Enamel Microhardness Before and After Cariogenic Challenge

    Get PDF
    There is evidence for a genetic component in caries susceptibility, and studies in humans have suggested that variation in enamel formation genes may contribute to caries. For the present study, we used DNA samples collected from 1,831 individuals from various population data sets. Single nucleotide polymorphism markers were genotyped in selected genes (ameloblastin, amelogenin, enamelin, tuftelin, and tuftelin interacting protein 11) that influence enamel formation. Allele and genotype frequencies were compared between groups with distinct caries experience. Associations with caries experience can be detected but they are not necessarily replicated in all population groups and the most expressive results was for a marker in AMELX (p = 0.0007). To help interpret these results, we evaluated if enamel microhardness changes under simulated cariogenic challenges are associated with genetic variations in these same genes. After creating an artificial caries lesion, associations could be seen between genetic variation in TUFT1 (p = 0.006) and TUIP11 (p = 0.0006) with enamel microhardness. Our results suggest that the influence of genetic variation of enamel formation genes may influence the dynamic interactions between the enamel surface and the oral cavity. © 2012 Shimizu et al

    An example of secondary fault activity along the North Anatolian Fault on the NE Marmara Sea Shelf, NW Turkey

    Full text link
    Seismic data on the NE Marmara Sea Shelf indicate that a NNE-SSW-oriented buried basin and ridge system exist on the sub-marine extension of the Paleozoic Rocks delimited by the northern segment of the North Anatolian Fault (NS-NAF), while seismic and multi-beam bathymetric data imply that four NW-SE-oriented strike-slip faults also exist on the shelf area. Seismic data indicate that NW-SE-oriented strike-slip faults are the youngest structures that dissect the basin-ridge system. One of the NW-SE-oriented faults (F1) is aligned with a rupture of the North Anatolian Fault (NAF) cutting the northern slope of the Cinarcik Basin. This observation indicates that these faults have similar characteristics with the NS-NAF along the Marmara Sea. Therefore, they may have a secondary relation to the NAF since the principle deformation zone of the NAF follows the Marmara Trough in that region. The seismic energy recorded on these secondary faults is much less than that on the NAF in the Marmara Sea. These faults may, however, produce a large earthquake in the long term

    The Modified Shields Classification and 12 Families with Defined DSPP Mutations

    Get PDF
    Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II

    Enamel Formation Genes Influence Enamel Microhardness Before and After Cariogenic Challenge

    Get PDF
    Abstract There is evidence for a genetic component in caries susceptibility, and studies in humans have suggested that variation in enamel formation genes may contribute to caries. For the present study, we used DNA samples collected from 1,831 individuals from various population data sets. Single nucleotide polymorphism markers were genotyped in selected genes (ameloblastin, amelogenin, enamelin, tuftelin, and tuftelin interacting protein 11) that influence enamel formation. Allele and genotype frequencies were compared between groups with distinct caries experience. Associations with caries experience can be detected but they are not necessarily replicated in all population groups and the most expressive results was for a marker in AMELX (p = 0.0007). To help interpret these results, we evaluated if enamel microhardness changes under simulated cariogenic challenges are associated with genetic variations in these same genes. After creating an artificial caries lesion, associations could be seen between genetic variation in TUFT1 (p = 0.006) and TUIP11 (p = 0.0006) with enamel microhardness. Our results suggest that the influence of genetic variation of enamel formation genes may influence the dynamic interactions between the enamel surface and the oral cavity
    corecore