1,116 research outputs found
Non-Newtonian fluid flow through three-dimensional disordered porous media
We investigate the flow of various non-Newtonian fluids through
three-dimensional disordered porous media by direct numerical simulation of
momentum transport and continuity equations. Remarkably, our results for
power-law (PL) fluids indicate that the flow, when quantified in terms of a
properly modified permeability-like index and Reynolds number, can be
successfully described by a single (universal) curve over a broad range of
Reynolds conditions and power-law exponents. We also study the flow behavior of
Bingham fluids described in terms of the Herschel-Bulkley model. In this case,
our simulations reveal that the interplay of ({\it i}) the disordered geometry
of the pore space, ({\it ii}) the fluid rheological properties, and ({\it iii})
the inertial effects on the flow is responsible for a substantial enhancement
of the macroscopic hydraulic conductance of the system at intermediate Reynolds
conditions. This anomalous condition of ``enhanced transport'' represents a
novel feature for flow in porous materials.Comment: 5 pages, 5 figures. This article appears also in Physical Review
Letters 103 194502 (2009
A free-boundary model of diffusive valley growth: theory and observation
Valleys that form around a stream head often develop characteristic finger-like elevation contours. We study the processes involved in the formation of these valleys and introduce a theoretical model that indicates how shape may inform the underlying processes. We consider valley growth as the advance of a moving boundary travelling forward purely through linearly diffusive erosion, and we obtain a solution for the valley shape in three dimensions. Our solution compares well to the shape of slowly growing groundwater-fed valleys found in Bristol, Florida. Our results identify a new feature in the formation of groundwater-fed valleys: a spatially variable diffusivity that can be modelled by a fixed-height moving boundary
From Single-SNP to Wide-Locus: Genome-Wide Association Studies Identifying Functionally Related Genes and Intragenic Regions in Small Sample Studies
Background: Genome Wide Association Studies (GWAS) have had limited success when applied to complex diseases. Analyzing SNPs individually requires several large studies to integrate the often divergent results. In the presence of epistasis, multivariate approaches based on the linear model (including stepwise logistic regression) often have low sensitivity and generate an abundance of artifacts. Methods: Recent advances in distributed and parallel processing spurred methodological advances in non-parametric statistics. U-statistics for multivariate data (μStat) are not confounded by unrealistic assumptions (linearity, independence). Results: By incorporating knowledge about relationships between SNPs, μGWAS (GWAS based on μStat) can identify clusters of genes around biologically relevant pathways and pinpoint functionally relevant regions within these genes. Conclusion: With this computational biostatistics approach increasing power and guarding against artifacts, personalized medicine and comparative effectiveness will advance while subgroup analyses of Phase III trials can now suggest risk factors for adverse events and novel directions for drug development
LOSS OF PHOSPHORUS BY RUNOFF FOR AGRICULTURAL WATERSHEDS
The loss of nutrients in runoff from agricultural land is a major cause of poor surface water quality in the United State. Scientists (NRCS) developed a technique to estimate the impact of agricultural watersheds on natural water resources. The objectives of this study were to apply this technique on the Wagon Train (WT),watershed to predict (1) loss of water by surface runoff, (2) loss of phosphorus (P) from soils by runoff and P loading for WT reservoir. The annual loss of water by runoff was estimated at 4.32 million m3 . The USGS data for a 50-year period (1951 to 2000) indicated that the average annual inflow for WT reservoir was 4.25 million m3 . The predicted annual P loss by runoff was 844 kg and could be considered as the annual loading for WT reservoir. The predicted P concentration in the runoff water at field sites was 196 μg/L. Phosphorus concentration observed in major streams at the beginning of spring (March) ranged from 99 μg/L to 240 μg/L with an average of 162 μg/L (S.D..= 40 μg/L), and the average P concentration in water samples taken from different locations in the reservoir was 140 μg/L. Phosphorus uptake by algae, weeds and aquatic plants, as well as high pH in the reservoir and streams might explain the slight drop of P concentration in waters. Further, the average P concentration observed in the main stream samples for the entire rainy season (March through October), ranged between 157 and 346 μg/L with an average of 267 μg/L (S.D. = 65 μg/L). Application of P fertilizers (April/May) for summer crops might explain the increase in P concentration. When factors affecting P concentration in streams are considered, the technique could provide a reasonable estimation of P concentration in stream water
On the potential of augmented reality for mathematics teaching with the application cleARmaths
Learning content in mathematics, such as vector geometry, is still predominantly taught in an abstract manner, as the visualization and interaction of three-dimensional problems are limited with classical forms of teaching such as blackboard lessons or exercise sheets. This research article proposes the use of augmented reality (AR) in mathematics education. The proposed approach aims at easing the learning process related to vector geometry currently taught in senior mathematics classes by using intuitive visualization. The article introduces the concept of AR and presents the didactic foundations and the influence on the learning process based on an extensive literature review. Although studies see great potential in the use of AR for teaching mathematics, the method has so far hardly been used in schools. This can be mainly explained by the technological entry barrier of AR and the lack of simple, robust AR applications, in particular for vector geometry. To fill this gap, the authors developed “cleARmaths”, a developed android application for augmented reality-based teaching in vector geometry that allows widespread use. As a didactical concept, some example exercises sessions with the app are proposed, demonstrating how the app could be used in a mathematics classroom. Finally, the app was evaluated in a mathematics class and the results analyzed in a detailed study. It was found by the teacher and students to be beneficial and amusing, demonstrating the potential for AR in mathematics classes
Infrared spectroscopy of diatomic molecules - a fractional calculus approach
The eigenvalue spectrum of the fractional quantum harmonic oscillator is
calculated numerically solving the fractional Schr\"odinger equation based on
the Riemann and Caputo definition of a fractional derivative. The fractional
approach allows a smooth transition between vibrational and rotational type
spectra, which is shown to be an appropriate tool to analyze IR spectra of
diatomic molecules.Comment: revised + extended version, 9 pages, 6 figure
Macromolecule Translocation across the Intestinal Mucosa of HIV-Infected Patients by Transcytosis and through Apoptotic Leaks
Based on indirect evidence, increased mucosal translocation of gut-derived microbial macromolecules has been proposed as an important pathomechanism in HIV infection. Here, we quantified macromolecule translocation across intestinal mucosa from treatment-naive HIV-infected patients, HIV-infected patients treated by combination antiretroviral therapy, and HIV-negative controls and analyzed the translocation pathways involved. Macromolecule permeability was quantified by FITC-Dextran 4000 (FD4) and horseradish peroxidase (HRP) flux measurements. Translocation pathways were addressed using cold inhibition experiments. Tight junction proteins were characterized by immunoblotting. Epithelial apoptosis was quantified and translocation pathways were further characterized by flux studies in T84 cell monolayers using inducers and inhibitors of apoptosis and endocytosis. In duodenal mucosa of untreated but not treated HIV-infected patients, FD4 and HRP permeabilities were more than a 4-fold increase compared to the HIV-negative controls. Duodenal macromolecule permeability was partially temperature-dependent and associated with epithelial apoptosis without altered expression of the analyzed tight junction proteins. In T84 monolayers, apoptosis induction increased, and both apoptosis and endocytosis inhibitors reduced macromolecule permeability. Using quantitative analysis, we demonstrate the increased macromolecule permeability of the intestinal mucosa in untreated HIV-infected patients. Combining structural and mechanistic studies, we identified two pathways of increased macromolecule translocation in HIV infection: transcytosis and passage through apoptotic leaks
Topography of inland deltas: Observations, modeling, and experiments
The topography of inland deltas is influenced by the water-sediment balance in distributary channels and local evaporation and seepage rates. In this letter a reduced complexity model is applied to simulate inland delta formation, and results are compared with the Okavango Delta, Botswana and with a laboratory experiment. We show that water loss in inland deltas produces fundamentally different dynamics of water and sediment transport than coastal deltas, especially deposition associated with expansion-contraction dynamics at the channel head. These dynamics lead to a systematic decrease in the mean topographic slope of the inland delta with distance from the apex following a power law with exponent alpha = -0.69 +/- 0.02 where the data for both simulation and experiment can be collapsed onto a single curve. In coastal deltas, on the contrary, the slope increases toward the end of the deposition zone.This work was funded by the Swiss National Foundation grant NF20021-116050/1. The author D. A. was affiliated to the Institute of Geodesy and Photogrammetry of ETH Zurich when performing the project. J. S. A. J would like to thank the Brazilian agencies CNPq, CAPES and FUNCAP for financial support.Publisher's Versio
- …