5 research outputs found

    Cyclotron production of 43Sc for PET imaging

    Get PDF
    Recently, significant interest in 44Sc as a tracer for positron emission tomography (PET) imaging has been observed. Unfortunately, the co-emission by 44Sc of high-energy γ rays (Eγ = 1157, 1499 keV) causes a dangerous increase of the radiation dose to the patients and clinical staff. However, it is possible to produce another radionuclide of scandium—43Sc—having properties similar to 44Sc but is characterized by much lower energy of the concurrent gamma emissions. This work presents the production route of 43Sc by α irradiation of natural calcium, its separation and purification processes, and the labeling of [DOTA,Tyr3] octreotate (DOTATATE) bioconjugate. Methods: Natural CaCO3 and enriched [40Ca]CaCO3 were irradiated with alpha particles for 1 h in an energy range of 14.8–30 MeV at a beam current of 0.5 or 0.25 μA. In order to find the optimum method for the separation of 43Sc from irradiated calcium targets, three processes previously developed for 44Sc were tested. Radiolabeling experiments were performed with DOTATATE radiobioconjugate, and the stability of the obtained 43Sc-DOTATATE was tested in human serum. Results: Studies of natCaCO3 target irradiation by alpha particles show that the optimum alpha particle energies are in the range of 24–27 MeV, giving 102 MBq/μA/h of 43Sc radioactivity which creates the opportunity to produce several GBq of 43Sc. The separation experiments performed indicate that, as with 44Sc, due to the simplicity of the operations and because of the chemical purity of the 43Sc obtained, the best separation process is when UTEVA resin is used. The DOTATATE conjugate was labeled by the obtained 43Sc with a yield >98 % at elevated temperature. Conclusions: Tens of GBq activities of 43Sc of high radionuclidic purity can be obtainable for clinical applications by irradiation of natural calcium with an alpha beam

    Ovaries of Chrysanthemum Irradiated with High-Energy Photons and High-Energy Electrons Can Regenerate Plants with Novel Traits

    No full text
    Classical mutation breeding using physical factors is a common breeding method for ornamental crops. The aim of our study was to examine the utility of ovaries excised from irradiated inflorescences of Chrysanthemum × morifolium (Ramat.) as explants for breeding purposes. We studied the in vitro regeneration capacity of the ovaries of two chrysanthemum cultivars: ‘Profesor Jerzy’ and ‘Karolina’ preceded by irradiation with high-energy photons (total dose 5, 10 and 15 Gy) and high-energy electrons (total dose 10 Gy). Growth and inflorescence parameters of greenhouse acclimatized regenerants were recorded, and ploidy level was estimated with flow cytometry. The strong impact of genotype on regeneration efficiency was recorded—cultivar ‘Karolina’ produced only 7 viable shoots, while ‘Profesor Jerzy’ produced totally 428 shoots. With an increase of irradiation dose, the regeneration decreased, the least responsive were explants irradiated with 15 Gy high-energy photons and 10 Gy high-energy electrons. Regenerants of ‘Profesor Jerzy’ obtained from these explants possessed shorter stem and flowered later. The highest number of stable, color and shape inflorescence variations were obtained from explants treated with 10 Gy high-energy photons. Variations of inflorescences were predominantly changes of shape—from full to semi-full. New color phenotypes were dark yellow, light yellow and pinkish, among them only the dark yellow phenotype remained stable during second year cultivation. None of the regenerants were haploid. The application of ovaries irradiated within the whole inflorescence of chrysanthemum can be successfully applied in the breeding programs, provided the mother cultivar regenerate in vitro efficiently

    Basic Characteristics of Dose Distributions of Photons Beam for Radiotherapeutic Applications Using YAG:Ce Crystal Detectors

    No full text
    Thermostimulated luminescence (TSL) dosimetry is a versatile tool for the assessment of dose from ionizing radiation. In this work, the Ce3+ doped Y3Al5O12 garnet (YAG:Ce) with a density ρ = 4.56 g/cm3 and effective atomic number Zeff = 35 emerged as a prospective TSL material in radiotherapy applications due to its excellent radiation stability, uniformity of structural and optical properties, high yield of TSL, and good position of main glow peak around 290–300 °C. Namely, the set of TSL detectors produced from the YAG:Ce single crystal is used for identification of the uniformity of dose and energy spectra of X-ray radiation generated by the clinical accelerator with 6 MV and 15 MV beams located in Radiotherapy Department at the Oncology Center in Bydgoszcz, Poland. We have found that the YAG:Ce crystal detects shows very promising results for registration of X-ray radiation generated by the accelerator with 6 MV beam. The next step in the research is connected with application of TSL detectors based on the crystals of much heavier garnets than YAG. It is estimated that the LuAG:Ce garnet crystals with high density ρ = 6.0 g/cm3 and Zeff = 62 can be used to evaluate the X-rays produced by the accelerator with the 15 MV beam

    Literaturverzeichnis

    No full text
    corecore