10 research outputs found

    Ritonavir blocks AKT signaling, activates apoptosis and inhibits migration and invasion in ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovarian cancer is the leading cause of mortality from gynecological malignancies, often undetectable in early stages. The difficulty of detecting the disease in its early stages and the propensity of ovarian cancer cells to develop resistance to known chemotherapeutic treatments dramatically decreases the 5-year survival rate. Chemotherapy with paclitaxel after surgery increases median survival only by 2 to 3 years in stage IV disease highlights the need for more effective drugs. The human immunodeficiency virus (HIV) infection is characterized by increased risk of several solid tumors due to its inherent nature of weakening of immune system. Recent observations point to a lower incidence of some cancers in patients treated with protease inhibitor (PI) cocktail treatment known as HAART (Highly Active Anti-Retroviral Therapy).</p> <p>Results</p> <p>Here we show that ritonavir, a HIV protease inhibitor effectively induced cell cycle arrest and apoptosis in ovarian cell lines MDH-2774 and SKOV-3 in a dose dependent manner. Over a 3 day period with 20 Ī¼M ritonavir resulted in the cell death of over 60% for MDAH-2774 compared with 55% in case of SKOV-3 cell line. Ritonavir caused G1 cell cycle arrest of the ovarian cancer cells, mediated by down modulating levels of RB phosphorylation and depleting the G1 cyclins, cyclin-dependent kinase and increasing their inhibitors as determined by gene profile analysis. Interestingly, the treatment of ritonavir decreased the amount of phosphorylated AKT in a dose-dependent manner. Furthermore, inhibition of AKT by specific siRNA synergistically increased the efficacy of the ritonavir-induced apoptosis. These results indicate that the addition of the AKT inhibitor may increase the therapeutic efficacy of ritonavir.</p> <p>Conclusion</p> <p>Our results demonstrate a potential use of ritonavir for ovarian cancer with additive effects in conjunction with conventional chemotherapeutic regimens. Since ritonavir is clinically approved for human use for HIV, drug repositioning for ovarian cancer could accelerate the process of traditional drug development. This would reduce risks, limit the costs and decrease the time needed to bring the drug from bench to bedside.</p

    Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sulforaphane (SFN), an isothiocyanate phytochemical present predominantly in cruciferous vegetables such as brussels sprout and broccoli, is considered a promising chemo-preventive agent against cancer. In-vitro exposure to SFN appears to result in the induction of apoptosis and cell-cycle arrest in a variety of tumor types. However, the molecular mechanisms leading to the inhibition of cell cycle progression by SFN are poorly understood in epithelial ovarian cancer cells (EOC). The aim of this study is to understand the signaling mechanisms through which SFN influences the cell growth and proliferation in EOC.</p> <p>Results</p> <p>SFN at concentrations of 5 - 20 Ī¼M induced a dose-dependent suppression of growth in cell lines MDAH 2774 and SkOV-3 with an IC50 of ~8 Ī¼M after a 3 day exposure. Combination treatment with chemotherapeutic agent, paclitaxel, resulted in additive growth suppression. SFN at ~8 Ī¼M decreased growth by 40% and 20% on day 1 in MDAH 2774 and SkOV-3, respectively. Cells treated with cytotoxic concentrations of SFN have reduced cell migration and increased apoptotic cell death via an increase in Bak/Bcl-2 ratio and cleavage of procaspase-9 and poly (ADP-ribose)-polymerase (PARP). Gene expression profile analysis of cell cycle regulated proteins demonstrated increased levels of tumor suppressor retinoblastoma protein (RB) and decreased levels of E2F-1 transcription factor. SFN treatment resulted in G1 cell cycle arrest through down modulation of RB phosphorylation and by protecting the RB-E2F-1 complex.</p> <p>Conclusions</p> <p>SFN induces growth arrest and apoptosis in EOC cells. Inhibition of retinoblastoma (RB) phosphorylation and reduction in levels of free E2F-1 appear to play an important role in EOC growth arrest.</p

    Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG Oncology/Gynecologic Oncology Group ancillary data analysis

    Get PDF
    Objective To determine the effect of age on completion of and toxicities following treatment of local regionally advanced cervical cancer (LACC) on Gynecologic Oncology Group (GOG) Phase Iā€“III trials. Methods An ancillary data analysis of GOG protocols 113, 120, 165, 219 data was performed. Wilcoxon, Pearson, and Kruskal-Wallis tests were used for univariate and multivariate analysis. Log rank tests were used to compare survival lengths. Results One-thousand-three-hundred-nineteen women were included; 60.7% were Caucasian, 15% were age 60ā€“70 years and an additional 5% were >70; 87% had squamous histology, 55% had stage IIB disease and 34% had IIIB disease. Performance status declined with age (p = 0.006). Histology and tumor stage did not significantly differ., Number of cycles of chemotherapy received, radiation treatment time, nor dose modifications varied with age. Notably, radiation protocol deviations and failure to complete brachytherapy (BT) did increase with age (p = 0.022 and p 50 for all-cause mortality (HR 1.02; 95% CI, 1.01ā€“1.04) was found, but no association between age and disease specific mortality was found. Conclusion This represents a large analysis of patients treated for LACC with chemo/radiation, approximately 20% of whom were >60 years of age. Older patients, had higher rates of incomplete brachytherapy which is not explained by collected toxicity data. Age did not adversely impact completion of chemotherapy and radiation or toxicities
    corecore