31 research outputs found

    Bridging the Gap between Field Experiments and Machine Learning: The EC H2020 B-GOOD Project as a Case Study towards Automated Predictive Health Monitoring of Honey Bee Colonies.

    Get PDF
    Honey bee colonies have great societal and economic importance. The main challenge that beekeepers face is keeping bee colonies healthy under ever-changing environmental conditions. In the past two decades, beekeepers that manage colonies of Western honey bees (Apis mellifera) have become increasingly concerned by the presence of parasites and pathogens affecting the bees, the reduction in pollen and nectar availability, and the colonies' exposure to pesticides, among others. Hence, beekeepers need to know the health condition of their colonies and how to keep them alive and thriving, which creates a need for a new holistic data collection method to harmonize the flow of information from various sources that can be linked at the colony level for different health determinants, such as bee colony, environmental, socioeconomic, and genetic statuses. For this purpose, we have developed and implemented the B-GOOD (Giving Beekeeping Guidance by computational-assisted Decision Making) project as a case study to categorize the colony's health condition and find a Health Status Index (HSI). Using a 3-tier setup guided by work plans and standardized protocols, we have collected data from inside the colonies (amount of brood, disease load, honey harvest, etc.) and from their environment (floral resource availability). Most of the project's data was automatically collected by the BEEP Base Sensor System. This continuous stream of data served as the basis to determine and validate an algorithm to calculate the HSI using machine learning. In this article, we share our insights on this holistic methodology and also highlight the importance of using a standardized data language to increase the compatibility between different current and future studies. We argue that the combined management of big data will be an essential building block in the development of targeted guidance for beekeepers and for the future of sustainable beekeeping

    Nationwide Screening for Bee Viruses and Parasites in Belgian Honey Bees

    No full text
    The health of honey bees is threatened by multiple factors, including viruses and parasites. We screened 557 honey bee (Apis mellifera) colonies from 155 beekeepers distributed all over Belgium to determine the prevalence of seven widespread viruses and two parasites (Varroa sp. and Nosema sp.). Deformed wing virus B (DWV-B), black queen cell virus (BQCV), and sacbrood virus (SBV) were highly prevalent and detected by real-time RT-PCR in more than 95% of the colonies. Acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV) and deformed wing virus A (DWV-A) were prevalent to a lower extent (between 18 and 29%). Most viruses were only present at low or moderate viral loads. Nevertheless, about 50% of the colonies harbored at least one virus at high viral load (>107 genome copies/bee). Varroa mites and Nosema sp. were found in 81.5% and 59.7% of the honey bee colonies, respectively, and all Nosema were identified as Nosema ceranae by real time PCR. Interestingly, we found a significant correlation between the number of Varroa mites and DWV-B viral load. To determine the combined effect of these and other factors on honey bee health in Belgium, a follow up of colonies over multiple years is necessary

    Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae).

    Get PDF
    THE skin secretion of many amphibians contains peptides that are able to kill a broad range of microorganisms (antimicrobial peptides: AMPs) and potentially play a role in innate immune defense. Similar to the toxin arsenals of various animals, amphibian AMP repertoires typically show major structural variation, and previous studies have suggested that this may be the result of diversifying selection in adaptation to a diverse spectrum of pathogens. Here we report on transcriptome analyses that indicate a very different pattern in the dwarf clawed frog H. boettgeri. Our analyses reveal a diverse set of transcripts containing two to six tandem repeats, together encoding 14 distinct peptides. Five of these have recently been identified as AMPs, while three more are shown here to potently inhibit the growth of gram-negative bacteria, including multi-drug resistant strains of the medically important Pseudomonas aeruginosa. Although the number of predicted peptides is similar to the numbers of related AMPs in Xenopus and Silurana frog species, they show significantly lower structural variation. Selection analyses confirm that, in contrast to the AMPs of other amphibians, the H. boettgeri peptides did not evolve under diversifying selection. Instead, the low sequence variation among tandem repeats resulted from purifying selection, recent duplication and/or concerted gene evolution. Our study demonstrates that defense peptide repertoires of closely related taxa, after diverging from each other, may evolve under differential selective regimes, leading to contrasting patterns of structural diversity

    Why social threat motivates malevolent creativity

    No full text
    History is rife with examples of the dark side of creativity—ingenious weapons, novel torture practices, and creative terrorist attacks—yet its psychological origins are sparsely addressed and poorly understood. Building on work showing that social threat induces focused thinking as well as aggressive cognitions and readiness to fight, we propose that threats lead to more malevolent creativity and less creativity in threat-irrelevant domains. Prisoner’s dilemma games were modified to evoke threat of exploitation. Participants then generated novel brick uses (Study 1, N = 113) or negotiation tactics (Study 2;N = 79). High (vs. low) social threat led to more “malevolent” creativity (e.g., using bricks as weapons; using intimidation as negotiation tactic). Social threat reduced nonthreat-related creative ideation only in Study 1. Study 2 showed that the increase of malevolent creativity was due to the motivation to defend and aggress, and emerged especially among individuals with a high need for cognition

    Comparison of Serological Methods for Tick-Borne Encephalitis Virus-Specific Antibody Detection in Wild Boar and Sheep: Impact of the Screening Approach on the Estimated Seroprevalence

    No full text
    Tick-borne encephalitis virus (TBEV) is a flavivirus transmitted by ticks. Serological screenings in animals are performed to estimate the prevalence and distribution of TBEV. Most screenings consist of a primary screening by ELISA, followed by confirmation of positive samples by plaque reduction neutralization tests (PRNTs). In this study, 406 wild boar sera were tested with 2 regularly used commercial ELISAs for flavivirus screening in animals (Immunozym FSME (TBEV) IgG All Species (Progen) and ID Screen West Nile Competition (Innovative Diagnostics)) and PRNTs for TBEV and USUTU virus. The results showed that the Immunozym and IDScreen ELISAs had low relative sensitivities of 23% and 20%, respectively, compared to the PRNT results. The relative specificities were 88% and 84% due to cross reactions with USUTU virus-specific antibodies. The minimal TBEV prevalence in our sample set was 8.6% when determined by PRNT. When the screening approach of ELISA testing followed by PRNT confirmation was applied, a TBEV seroprevalence of only 2.0% and 1.7% was found. The suboptimal performance of the ELISAs was confirmed by testing sera collected from experimentally TBEV-infected sheep. While the PRNT detected TBEV specific antibodies in 94% of samples collected between 7 and 18 days post-infection, the ELISAs classified only 50% and 31% of the samples as positive. Both routinely used ELISAs for TBEV antibody screening in animal sera were shown to have a low sensitivity, potentially leading to an underestimation of the true prevalence, and furthermore cross-react with other flavivirus antibodies

    Comparison of Serological Methods for Tick-Borne Encephalitis Virus-Specific Antibody Detection in Wild Boar and Sheep: Impact of the Screening Approach on the Estimated Seroprevalence

    No full text
    Tick-borne encephalitis virus (TBEV) is a flavivirus transmitted by ticks. Serological screenings in animals are performed to estimate the prevalence and distribution of TBEV. Most screenings consist of a primary screening by ELISA, followed by confirmation of positive samples by plaque reduction neutralization tests (PRNTs). In this study, 406 wild boar sera were tested with 2 regularly used commercial ELISAs for flavivirus screening in animals (Immunozym FSME (TBEV) IgG All Species (Progen) and ID Screen West Nile Competition (Innovative Diagnostics)) and PRNTs for TBEV and USUTU virus. The results showed that the Immunozym and IDScreen ELISAs had low relative sensitivities of 23% and 20%, respectively, compared to the PRNT results. The relative specificities were 88% and 84% due to cross reactions with USUTU virus-specific antibodies. The minimal TBEV prevalence in our sample set was 8.6% when determined by PRNT. When the screening approach of ELISA testing followed by PRNT confirmation was applied, a TBEV seroprevalence of only 2.0% and 1.7% was found. The suboptimal performance of the ELISAs was confirmed by testing sera collected from experimentally TBEV-infected sheep. While the PRNT detected TBEV specific antibodies in 94% of samples collected between 7 and 18 days post-infection, the ELISAs classified only 50% and 31% of the samples as positive. Both routinely used ELISAs for TBEV antibody screening in animal sera were shown to have a low sensitivity, potentially leading to an underestimation of the true prevalence, and furthermore cross-react with other flavivirus antibodies

    Overview of hymenochirin transcripts: amino acid sequences, structure and encoded peptides.

    No full text
    <p><b>A</b> Deduced amino acid sequences of the hymenochirin transcripts. Previously published hymenochirins <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0086339#pone.0086339-Mechkarska4" target="_blank">[27]</a> are marked in grey; predicted novel encoded hymenochirins are marked in black. Small arrowheads indicate putative cleavage sites for the hymenochirins. Names of encoded hymenochirins are indicated on the right. <b>B</b> Comparative schematic representation of repeat sequences in the transcripts. The number of cDNA sequences represented by each transcript is indicated between brackets. Each repeat is represented by one larger and one smaller block (repeat sections), corresponding to exons 2 and 3 in <i>S. tropicalis</i> and <i>X. laevis</i> AMP genes. The numbers in the blocks correspond to unique repeat sections as used in the phylogenetic analyses. Hymenochirins encoded by the corresponding transcripts are indicated on the right; previously published hymenochirins <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0086339#pone.0086339-Mechkarska4" target="_blank">[27]</a> are labeled grey, the novel hymenochirins are labeled black.</p

    Comparison of pairwise sequence similarities between AMPs of <i>H. boettgeri</i>, <i>S. tropicalis</i> and <i>X. laevis</i>.

    No full text
    <p>Box plots comparing the distribution of pairwise sequence similarities (in %) between the 14 hymenochirins of <i>H. boettgeri</i> and all known AMP peptides of <i>S. tropicalis</i> and <i>X. laevis</i> respectively. Boxes indicate median, and 25- and 75- percentiles, and whiskers indicate minimum and maximum values.</p
    corecore