59 research outputs found

    Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters

    Get PDF
    The fundamental bandgap E-g of a semiconductor-often determined by means of optical spectroscopy-represents its characteristic fingerprint and changes distinctively with temperature. Here, we demonstrate that in magic sized II-VI clusters containing only 26 atoms, a pronounced weakening of the bonds occurs upon optical excitation, which results in a strong exciton-driven shift of the phonon spectrum. As a consequence, a drastic increase of dE(g)/dT (up to a factor of 2) with respect to bulk material or nanocrystals of typical size is found. We are able to describe our experimental data with excellent quantitative agreement from first principles deriving the bandgap shift with temperature as the vibrational entropy contribution to the free energy difference between the ground and optically excited states. Our work demonstrates how in small nanoparticles, photons as the probe medium affect the bandgap-a fundamental semiconductor property. The bandgap of nanostructures usually follows the bulk value upon temperature change. Here, the authors find that in small nanocrystals a weakening of the bonds due to optical excitation causes a pronounced phonon shift, leading to a drastic enhancement of the bandgap's temperature dependence.

    Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization.

    Get PDF
    BACKGROUND: Selecting optimal stimulation parameters from numerous possibilities is a major obstacle for assessing the efficacy of non-invasive brain stimulation. OBJECTIVE: We demonstrate that Bayesian optimization can rapidly search through large parameter spaces and identify subject-level stimulation parameters in real-time. METHODS: To validate the method, Bayesian optimization was employed using participants' binary judgements about the intensity of phosphenes elicited through tACS. RESULTS: We demonstrate the efficiency of Bayesian optimization in identifying parameters that maximize phosphene intensity in a short timeframe (5 min for >190 possibilities). Our results replicate frequency-dependent effects across three montages and show phase-dependent effects of phosphene perception. Computational modelling explains that these phase effects result from constructive/destructive interference of the current reaching the retinas. Simulation analyses demonstrate the method's versatility for complex response functions, even when accounting for noisy observations. CONCLUSION: Alongside subjective ratings, this method can be used to optimize tACS parameters based on behavioral and neural measures and has the potential to be used for tailoring stimulation protocols to individuals

    Review Section : Nature/Nurture Revisited I

    Full text link
    Biologically oriented approaches to the study of human conflict have thus far been limited largely to the study of aggression. A sample of the literature on this topic is reviewed, drawing upon four major approaches: comparative psychology, ethology (including some popularized accounts), evolutionary-based theories, and several areas of human physiology. More sophisticated relationships between so-called "innate" and "acquired" determinants of behavior are discussed, along with the proper relevance of animal behavior studies for human behavior. Unless contained in a comprehensive theory which includes social and psychological variables, biolog ically oriented theories (although often valid within their domain) offer at best severely limited and at worst highly misleading explanations of complex social conflicts. The review concludes with a list of several positive contributions of these biological approaches and suggests that social scientists must become more knowledgeable about them.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68270/2/10.1177_002200277401800206.pd

    An integrated expression atlas of miRNAs and their promoters in human and mouse

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions

    Fungal G-protein-coupled receptors::mediators of pathogenesis and targets for disease control

    Get PDF
    G-protein signalling pathways are involved in sensing the environment, enabling fungi to coordinate cell function, metabolism and development with their surroundings, thereby promoting their survival, propagation and virulence. G-protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in fungi. Despite the apparent importance of GPCR signalling to fungal biology and virulence, relatively few GPCR–G-protein interactions, and even fewer receptor-binding ligands, have been identified. Approximately 40% of current pharmaceuticals target human GPCRs, due to their cell surface location and central role in cell signalling. Fungal GPCRs do not belong to any of the mammalian receptor classes, making them druggable targets for antifungal development. This Review Article evaluates developments in our understanding of fungal GPCR-mediated signalling, while substantiating the rationale for considering these receptors as potential antifungal targets. The need for insights into the structure–function relationship of receptor–ligand interactions is highlighted, which could facilitate the development of receptor-interfering compounds that could be used in disease control

    A review of assessments of the greenhouse gas footprint and abatement potential of information and communication technology

    Full text link
    Various studies have assessed the GHG footprint of the ICT sector (ICT end-user devices, data centers, telecommunication networks) and the potential of ICT use cases (e.g. smart homes, ride sharing) to avoid GHG emissions in other sectors (e.g buildings, transport). We systematically compare relevant studies from the last ten years and discuss the robustness of results in view of the methods used. The results show that the ICT sector causes between 1.5% and 4% of global GHG emissions, a major share of which is due to the production of ICT end-user devices. Estimating GHG impacts of device production is the main source of uncertainty. Results of studies on ICT's GHG abatement potential are less robust, in particular due to uncertainty with regard to use case impacts in a real-life setting, types and sizes of economy-wide rebound effects. Thus the existing studies do not provide a reliable basis for estimating the actually realized GHG abatements. To improve the assessment results and provide a more reliable basis for deriving GHG reduction measures future research should empirically investigate which solution design and accompanying policies are suitable to exploit GHG reduction potentials in real-life. Results of these studies would also increase the robustness of assessments of GHG abatement potentials
    corecore