1,866 research outputs found

    Sialic Acid Mutarotation Is Catalyzed by the Escherichia coli β-Propeller Protein YjhT

    Get PDF
    The acquisition of host-derived sialic acid is an important virulence factor for some bacterial pathogens, but in vivo this sugar acid is sequestered in sialoconjugates as the {alpha}-anomer. In solution, however, sialic acid is present mainly as the β-anomer, formed by a slow spontaneous mutarotation. We studied the Escherichia coli protein YjhT as a member of a family of uncharacterized proteins present in many sialic acid-utilizing pathogens. This protein is able to accelerate the equilibration of the {alpha}- and β-anomers of the sialic acid N-acetylneuraminic acid, thus describing a novel sialic acid mutarotase activity. The structure of this periplasmic protein, solved to 1.5Å resolution, reveals a dimeric 6-bladed unclosed β-propeller, the first of a bacterial Kelch domain protein. Mutagenesis of conserved residues in YjhT demonstrated an important role for Glu-209 and Arg-215 in mutarotase activity. We also present data suggesting that the ability to utilize {alpha}-N-acetylneuraminic acid released from complex sialoconjugates in vivo provides a physiological advantage to bacteria containing YjhT

    Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array

    Get PDF
    The injection of sulfur into the stratosphere by volcanic eruptions is the dominant driver of natural climate variability on interannual-to-multidecadal timescales. Based on a set of continuous sulfate and sulfur records from a suite of ice cores from Greenland and Antarctica, the HolVol v.1.0 database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulfur injection (VSSI) events for the Holocene (from 9500 BCE or 11,500 year BP to 1900 CE), constituting an extension of the previous record by 7,000 years. The database incorporates new-generation ice-core aerosol records with sub-annual temporal resolution and demonstrated sub-decadal dating accuracy and precision. By tightly aligning and stacking the ice-core records on the WD2014 chronology from Antarctica we resolve long-standing inconsistencies in the dating of ancient volcanic eruptions that arise from biased (i.e., dated too old) ice-core chronologies over the Holocene for Greenland. We reconstruct a total of 850 volcanic eruptions with injections in excess of 1 TgS, of which 329 (39%) are located in the low latitudes with bipolar sulfate deposition, 426 (50%) are located in the Northern Hemisphere (NH) extratropics and 88 (10%) are located in the Southern Hemisphere (SH) extratropics. The spatial distribution of reconstructed eruption locations is in agreement with prior reconstructions for the past 2,500 years. In total, these eruptions injected 7410 teragram of sulfur (TgS) into the stratosphere, 70% from tropical eruptions and 25% from NH extratropical eruptions. A long-term latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the HolVol VSSI estimates, representing the first Holocene-scale reconstruction constrained by Greenland and Antarctica ice cores. These new long-term reconstructions of past VSSI and SAOD variability confirm evidence from regional volcanic eruption chronologies (e.g., from Iceland) in showing that the early Holocene (9500-7000 BCE) experienced a higher number of volcanic eruptions (+16%) and cumulative VSSI (+86%) compared to the past 2,500 years. This increase coincides with the rapid retreat of ice sheets during deglaciation, providing context for potential future increases of volcanic activity in regions under projected glacier melting in the 21st century. The reconstructed VSSI and SAOD data are available at https://doi.pangaea.de/10.1594/PANGAEA.928646 (Sigl et al., 2021)

    High resolution chemical stratigraphies of atmospheric depositions from a 4 m depth snow pit at dome C (East Antarctica)

    Get PDF
    In this work, we present chemical stratigraphies of two sampling lines collected within a 4 m depth snow pit dug in Dome C during the Antarctic summer Campaign 2017/2018, 12 years after the last reported snow pit. The first sampling line was analyzed for nine anionic and cationic species using Ion Chromatography (IC); the second sampling line was analyzed for seven major elements in an innovative way with Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) after sample pre-concentration, allowing the study of deposition processes of new markers especially related to crustal source. This coupled analysis, besides confirming previous studies, allowed us to investigate the depositions of the last decades at Dome C, enriching the number of the detected chemical markers, and yielding these two techniques complementary for the study of different markers in this kind of matrix. As a result of the dating, the snow layers analyzed covered the last 50 years of snow depositions. The assessment of the accumulation rate, estimated about 9 cm yr−1, was accomplished only for the period 1992–2016, as the eruption of 1992 constituted the only tie-point found in nssSO42− depth profile. Na, the reliable sea salt marker, together with Mg and Sr, mainly arose from marine sources, whereas Ca, Al and Fe originated from crustal inputs. Post-depositional processes occurred on Cl− as well as on NO3− and methanesulfonic acid (MSA); compared to the latter, Cl− had a more gradual decrease, reporting a threshold at 2.5 m for the post-depositional process completion. For NO3− and MSA, instead, the threshold was shallower, at about 1 m depth, with a loss of 87% for NO3− and of 50% for MSA

    Low-loss singlemode PECVD silicon nitride photonic wire waveguides for 532-900 nm wavelength window fabricated within a CMOS pilot line

    Get PDF
    PECVD silicon nitride photonic wire waveguides have been fabricated in a CMOS pilot line. Both clad and unclad single mode wire waveguides were measured at lambda = 532, 780, and 900 nm, respectively. The dependence of loss on wire width, wavelength, and cladding is discussed in detail. Cladded multimode and singlemode waveguides show a loss well below 1 dB/cm in the 532-900 nm wavelength range. For singlemode unclad waveguides, losses < 1 dB/cm were achieved at lambda = 900 nm, whereas losses were measured in the range of 1-3 dB/cm for lambda = 780 and 532 nm, respectively

    Potential source contribution function analysis of high latitude dust sources over the arctic: Preliminary results and prospects

    Get PDF
    The results of a preliminary investigation of the dust sources in the Arctic based on their geochemical properties by potential source contribution function (PSCF) analysis are presented in this paper. For this purpose, we considered one year of aerosol geochemical data from Ny-Ålesund, Svalbard, and a short list of chemical elements (i.e., Al, Fe, Mn, Ti, Cr, V, Ni, Cu, and Zn) variably related to the dust fraction. Based on PSCF analysis: (i) four different dust source areas (i.e., Eurasia, Greenland, Arctic-Alaska, and Iceland) were characterized by distinguishing geochemical ranges and seasonal occurrence; and (ii) a series of typical dust days from the distinct source areas were identified based on the corresponding back trajectory patterns. Icelandic dust samples revealed peculiar but very variable characteristics in relation to their geographical source regions marked by air mass back trajectories. The comparison between pure and mixed Icelandic dust samples (i.e., aerosols containing Icelandic dust along with natural and/or anthropogenic components) revealed the occurrence of different mixing situations. Comparison with Icelandic soils proved the existence of dilution effects related to the emission and the transport processes
    corecore