62 research outputs found

    Nanomechanical In Situ Monitoring of Proteolysis of Peptide by Cathepsin B

    Get PDF
    Characterization and control of proteolysis of peptides by specific cellular protease is a priori requisite for effective drug discovery. Here, we report the nanomechanical, in situ monitoring of proteolysis of peptide chain attributed to protease (Cathepsin B) by using a resonant nanomechanical microcantilever immersed in a liquid. Specifically, the detection is based on measurement of resonant frequency shift arising from proteolysis of peptides (leading to decrease of cantilever's overall mass, and consequently, increases in the resonance). It is shown that resonant microcantilever enables the quantification of proteolysis efficacy with respect to protease concentration. Remarkably, the nanomechanical, in situ monitoring of proteolysis allows us to gain insight into the kinetics of proteolysis of peptides, which is well depicted by Langmuir kinetic model. This implies that nanomechanical biosensor enables the characterization of specific cellular protease such as its kinetics

    Local heat transfer in a mixing vessel using heat flux sensors

    No full text

    RhCu 3D Nanoframe as a Highly Active Electrocatalyst for Oxygen Evolution Reaction under Alkaline Condition

    Get PDF
    One pot synthesis of RhCu alloy truncated octahedral nanoframes, Cu@Rh core–shell nanoparticles, and a bundle of five RhCu nanowires is demonstrated. The RhCu alloy 3D nanoframe, in particular, exhibits excellent catalytic activity toward the oxygen evolution reaction under alkaline conditions. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim113131sciescopu
    corecore