21 research outputs found

    Notch1 binds and induces degradation of Snail in hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is a common, highly invasive malignant tumor associated with a high mortality rate. We previously reported that the aberrant expression of Snail via activation of reactive oxygen species contributes to the invasive property of HCC, in part by downregulation of E-cadherin through both transcriptional repression and epigenetic modification of the E-cadherin promoter. Having demonstrated the ability of Snail to bind and recruit histone deacetylase 1 and DNA methyltransferase 1 in this context, we set out to look for other interactions that could affect its ability to promote oncogenic transformation and cancer cell invasion.</p> <p>Results</p> <p>Using cells that stably expressed Snail, we characterized Snail protein interactors by tandem affinity purification and mass spectrometry. Immunoprecipitation and subcellular colocalization studies were performed to confirm our identification of the Notch1 intracellular domain (NICD) as a novel Snail-binding partner. NICD interaction with Snail was found to induce ubiquitination and MDM2-dependent degradation of Snail. Interestingly, NICD inhibited Snail-dependent invasive properties in both HCC cells and mouse embryonic fibroblasts.</p> <p>Conclusions</p> <p>Our study demonstrates that NICD can oppose Snail-dependent HCC cell invasion by binding and inducing proteolytic degradation of Snail. Although Notch signaling and Snail are both widely considered tumor-promoting factors, our findings indicate that the individual oncogenic contribution of Notch1 and Snail in malignant systems should be interpreted carefully, particularly when they are conjointly expressed.</p

    Snail inhibits Notch1 intracellular domain mediated transcriptional activation via competing with MAML1

    No full text
    Notch1 intracellular domain (NICD) is the transcription factor which controls cell fate and differentiation in embryonic and tumor cells. Snail has a critical role which increases invasion and metastasis of cancer cell as a transcription factor and epigenetic regulator. Recently, we discovered NICD induced Snail degradation by direct binding interaction with Snail. In this experiment, we found that Snail suppressed transcriptional activity of the protein complex formed with NICD and RBPJk in nucleus. Moreover, Snail decreased transcription of NICD target genes via competing with MAML1, co-activator, in NICD complex. In conclusion, Snail inhibited NICD-mediated transcriptional activation of target genes by physical interaction with NICD. (c) 2013 Elsevier Inc. All rights reserved.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000001602/1SEQ:1PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000001602ADJUST_YN:YEMP_ID:A004208DEPT_CD:3344CITE_RATE:2.406DEPT_NM:생명과학부SCOPUS_YN:YCONFIRM:

    N-Glycosylation Facilitates 4-1BB Membrane Localization by Avoiding Its Multimerization

    No full text
    Leveraging the T cell immunity against tumors represents a revolutionary type of cancer therapy. 4-1BB is a well-characterized costimulatory immune receptor existing on activated T cells and mediating their proliferation and cytotoxicity under infectious diseases and cancers. Despite the accumulating interest in implementing 4-1BB as a therapeutic target for immune-related disorders, less is known about the pattern of its intracellular behaviors and regulations. It has been previously demonstrated that 4-1BB is heavily modified by N-glycosylation; however, the biological importance of this modification lacks detailed elucidation. Through biochemical, biophysical, and cell-biological approaches, we systematically evaluated the impact of N-glycosylation on the ligand interaction, stability, and localization of 4-1BB. We hereby highlighted that N-glycan functions by preventing the oligomerization of 4-1BB, thus permitting its membrane transportation and fast turn-over. Without N-glycosylation, 4-1BB could be aberrantly accumulated intracellularly and fail to be sufficiently inserted in the membrane. The N-glycosylation-guided intracellular processing of 4-1BB serves as the potential mechanism explicitly modulating the &ldquo;on&rdquo; and &ldquo;off&rdquo; of 4-1BB through the control of protein abundance. Our study will further solidify the understanding of the biological properties of 4-1BB and facilitate the clinical practice against this promising therapeutic target

    HBx modulates iron regulatory protein 1-mediated iron metabolism via reactive oxygen species

    No full text
    Hepatitis B virus X protein (HBx) is involved in viral metabolism and progression of liver disease. Iron metabolism plays a significant role in liver disease. In this report, to elucidate the relationship between iron metabolism and HBx, we established the Huh7 cell lines in which HBx was stably expressed (Huh7-HBx). In Huh7-HBx, we observed that transferrin receptor 1 (TfR1) expression decreased and ferritin heavy chain (FtH) expression increased as well as reactive oxygen species (ROS) level increased. We also found that these modulations were caused by the downregulation of iron regulatory protein 1 (IRP1). Furthermore, the levels of total iron and labile iron pool (LIP) were altered in Huh7-HBx. In addition, antioxidant N-acetylcystein (NaC) increased IRP1 expression by depleting HBx-induced ROS. We also confirmed these alterations of TfR1 and FtH in the primary hepatocytes of HBx transgenic mice and in HepG2.2.15 cells that constitutively replicate the intact HBV genome. In conclusion, these results suggest that HBx modulates iron metabolism via ROS leading to pathological status in liver diseases.This study was supported by a grant from the National R&D Program for Cancer Control, the Ministry of Health & Welfare, Korea (0520020). Jin-Mo Gu and Seung Oe Lim were supported by BK21 Research Fellowship from the Ministry of Education and Human Resources Development

    p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma

    Get PDF
    The tumor suppressor protein p53 is a key regulator of cell cycle arrest and apoptosis. Snail protein regulates cancer-associated malignancies. However, the relationship between p53 and Snail proteins in hepatocellular carcinoma (HCC) has not been completely understood. To determine whether Snail and p53 contribute to hepatocarcinogenesis, we analyzed the expression of Snail proteins in p53-overexpressing HCC cells. We found that p53 wild-type (WT) induced the degradation of Snail protein via murine double minute 2-mediated ubiquitination, whereas p53 mutant did not induce Snail degradation. As we expected, only p53WT induced endogenous Snail protein degradation and inhibited tumor cell invasion. These findings contribute to a better understanding of the role of p53 mutation and Snail overexpression as a late event in hepatocarcinogenesis. Structured summary: MINT-7718917: p53 (uniprotkb:P04637) physically interacts (MI:0915) with Snai1 (uniprotkb:O95863) by anti bait coimmunoprecipitation (MI: 0006) MINT-7719877: Snai1 (uniprotkb: O95863) physically interacts (MI: 0915) with ubiquitin (uniprotkb: P62988) by anti tag coimmunoprecipitation (MI: 0007) MINT-7718928: Snai1 (uniprotkb: O95863) physically interacts (MI: 0915) with p53 (uniprotkb: P04637) by anti tag coimmunoprecipitation (MI: 0007) MINT-7718939: Snai1 (uniprotkb: O95863) physically interacts (MI: 0915) with MDM2 (uniprotkb: Q00987) by anti tag coimmunoprecipitation (MI: 0007) (C) 2010 Federation of European Biochemical Societies

    GSK3β inactivation promotes the oncogenic functions of EZH2 and enhances methylation of H3K27 in human breast cancers

    No full text
    During the process of tumorigenesis, inactivation of tumor suppressors is a critical step. EZH2, a histone methyltransferase, promotes cell growth and migration through catalyzing trimethylation of histone H3 at Lys 27 (H3K27me3) and plays an important role in tumorigenesis. Its expression can be controlled by phosphorylation. However, the regulation of EZH2 activity by tumor suppressor kinase is not well understood. In this study, we show that glycogen synthase kinase 3 beta (GSK3β) negatively regulates H3K27 trimethylation. We also validate that GSKβ physically interacts with EZH2, and their interaction occurs in the cytosol. GSK3β phosphorylates EZH2 at Ser363 and Thr367 in vitro, and activating GSK3β upregulates Thr367 phosphorylationin vivo. Cells expressing GSK3β-non-phosphorylatable mutant EZH2 have higher H3K27 trimethylation and enhanced ability of cell migration and anchorage-independent growth. Inactivation of GSK3β as measured by its phosphorylation at Ser9 is positively correlated with higher level of H3K27 trimethylation in tumor tissues from breast cancer patients. Our study indicated that GSK3β phosphorylates EZH2 at Ser363 and Thr367, resulting in reduced H3K27 trimethylation and biological activity of EZH2 in breast cancer
    corecore