1,161 research outputs found

    Model Systems for the Study of Kidney Development: Use of the Pronephros in the Analysis of Organ Induction and Patterning

    Get PDF
    AbstractMost vertebrate organs, once formed, continue to perform the function for which they were generated until the death of the organism. The kidney is a notable exception to this rule. Vertebrates, even those that do not undergo metamorphosis, utilize a progression of more complex kidneys as they grow and develop. This is presumably due to the changing conditions to which the organism must respond to retain what Homer Smith referred to as our physiological freedom. To quote, “Recognizing that we have the kind of blood we have because we have the kind of kidneys we have, we must acknowledge that our kidneys constitute the major foundation of our physiological freedom. Only because they work the way they do has it become possible for us to have bones, muscles, glands, and brains. Superficially, it might be said that the function of the kidneys is to make urine; but in a more considered view one can say that the kidneys make the stuff of philosophy itself” (“From Fish to Philosopher,” Little, Brown and Co., Boston, 1953). Different kidneys are used to make the stuff of philosophy at different stages of development depending on the age and needs of the organism, rather than the usual approach of simply making embryonic organs larger as the animal grows. Although evolution has provided the higher vertebrates with complex adult kidneys, they continue to utilize simple kidneys in embryogenesis. In lower vertebrates with simple adult kidneys, even more simple versions are used during early developmental stages. In this review the anatomy, development, and gene expression patterns of the embryonic kidney, the pronephros, will be described and compared to the more complex kidney forms. Despite some differences in anatomy, similar developmental pathways seem to be responsible for the induction and the response to induction in both evanescent and permanent kidney forms. Gene expression patterns can, therefore, be added to the morphological and functional data indicating that all forms of the kidney are closely related structures. Given the similarities between the development of simple and complex kidneys, the embryonic kidneys may be an ideal model system in which to investigate the genesis of multicomponent organ systems

    Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand

    Get PDF
    Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space

    Emission of monoterpenes from European beech (<i>Fagus</i><i> sylvatica</i> L.) as a function of light and temperature

    No full text
    International audienceUsing a dynamic branch enclosure technique European beech (Fagus sylvatica L.) was characterised as a strong emitter of monoterpenes, with sabinene being the predominant compound released. Since monoterpene emission was demonstrated to be a function of light and temperature, application of light and temperature dependent algorithms resulted in reasonable agreement with the measured data. Furthermore, during high temperature periods the depression of net CO2 exchange during midday (midday depression) was accompanied by a depression of monoterpene emission on one occasion. The species dependent standard emission factor and the light and temperature regulated release of monoterpenes is of crucial importance for European VOC emissions. All measurements were performed within the framework of the ECHO project (Emission and CHemical transformation of biogenic volatile Organic compounds) during two intensive field campaigns in the summers of 2002 and 2003

    Benchmark Framework for Virtual Students’ Behaviours

    Get PDF
    This paper demonstrates the integration and evaluation of different atmosphere models into Virtual Reality (VR) training for teacher education. We developed three behaviour models to simulate different levels of class discipline. We evaluated their performances using a combination of objective and subjective measurements. Our initial results suggest that the more believable and distinguishable classroom atmospheres are produced by creating more consistent behaviours across virtual students. Our results confirm the importance of similar behaviours to elicit a particular atmosphere

    Similar glycaemic control and less hypoglycaemia during active titration after insulin initiation with glargine 300 units/mL and degludec 100 units/mL: A subanalysis of the BRIGHT study

    Get PDF
    Aim: To further investigate glycaemic control and hypoglycaemia in BRIGHT, focusing on the titration period. Materials and Methods: BRIGHT was a multicentre, open-label, randomized, active-controlled, two-arm, parallel-group, 24-week study in insulin-naĂŻve patients with uncontrolled type 2 diabetes initiated on glargine 300 U/mL (Gla-300) (N = 466) or degludec (IDeg-100) (N = 463). Predefined efficacy and safety outcomes were investigated during the initial 12-week titration period. In addition, patients’ characteristics and clinical outcomes were assessed descriptively, stratified by confirmed (≀3.9 mmol/L) hypoglycaemia incidence during the initial titration period. Results: At week 12, HbA1c was comparable between Gla-300 (7.32%) and IDeg-100 (7.23%), with similar least squares (LS) mean reductions from baseline (−1.37% and − 1.39%, respectively; LS mean difference of 0.02; 95% confidence interval: −0.08 to 0.12). Patients who experienced hypoglycaemia during the initial titration period had numerically greater HbA1c reductions by week 12 than patients who did not (−1.46% vs. −1.28%), and higher incidence of anytime (24 hours; 73.3% vs. 35.7%) and nocturnal (00:00–06:00 hours; 30.0% vs. 11.9%) hypoglycaemia between weeks 13–24. Conclusions: The use of Gla-300 resulted in similar glycaemic control as IDeg-100 during the initial 12-week titration period of the BRIGHT study, when less anytime (24 hours) hypoglycaemia with Gla-300 versus IDeg-100 has been reported. Experiencing hypoglycaemia shortly after initiating Gla-300 or IDeg-100 may be associated with hypoglycaemia incidence in the longer term, potentially impacting glycaemic management

    Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand

    Get PDF
    Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space

    Picosecond Nonlinear Relaxation of Photoinjected Carriers in a Single GaAs/AlGaAs Quantum Dot

    Full text link
    Photoemission from a single self-organized GaAs/AlGaAs quantum dot (QD) is temporally resolved with picosecond time resolution. The emission spectra consisting of the multiexciton structures are observed to depend on the delay time and the excitation intensity. Quantitative agreement is found between the experimental data and the calculation based on a model which characterizes the successive relaxation of multiexcitons. Through the analysis we can determine the carrier relaxation time as a function of population of photoinjected carriers. Enhancement of the intra-dot carrier relaxation is demonstrated to be due to the carrier-carrier scattering inside a single QD.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B, Rapid
    • 

    corecore