489 research outputs found

    Aggregating available soil water holding capacity data for crop yield models

    Get PDF
    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile

    Tiger Sharks Eat Songbirds: Reply

    Get PDF
    In response to our recent paper (Drymon et al. 2019), Yosef (2019) questions the mechanism proposed to explain interactions between tiger sharks (Galeocerdo cuvier) and migratory songbirds, while offering an alternative mechanism based on a single observation. We appreciate the comments from Yosef and the opportunity to respond

    Rapid Orthotics for Cure Kenya: Mechanical Design and Modeling of 3D Printed Sockets

    Get PDF
    Rapid Orthotics for Cure Kenya (ROCK) works with CURE, a non-profit orthopedic workshop in Kjabe, Kenya, to implement a 3D printing system for manufacturing custom prosthetics and orthotics. The goal is to reduce the production time and cost for the current transtibial sockets being manufactured in the orthotic clinic to give the patients a way to integrate into society and reduce stigma from their communities. The team has developed a transtibial socket for below-the-knee amputees produced by a 3D printing system that converts a scan of the residual limb to a model that takes a third of the time to print versus the current manufacturing method. The current focus of the team is to develop a rigorous testing procedure adhering to the requirements set by the ISO 10328 Standard, an internationally recognized testing method. In order to ensure the safety of the sockets, tests must be run demonstrating that the product can withstand the different forces experienced during the gait cycle. Due to the complex geometry of the applied forces outlined in the ISO 10328, the team has designed a novel testing rig that interfaces with the MTS machine at Messiah University to apply the necessary forces according to the geometry outlined in the standard. Additionally, computer-based simulations are being developed in SolidWorks, a 3D modeling software, to determine how the components will behave under certain loading conditions. This is done to ensure accordance with the 10328 Standard and will be critical in the future for developing necessary cyclic tests.https://mosaic.messiah.edu/engr2021/1013/thumbnail.jp

    Population Dynamics, Relative Abundance, and Habitat Suitability of Adult Red Drum (Sciaenops ocellatus) in Nearshore Waters of the North-Central Gulf of Mexico

    Get PDF
    In the Gulf of Mexico, the red drum (Sciaenops ocellatus) is an immensely popular sportfish, yet the Gulf of Mexico stock is currently managed as data-limited in federal waters. The results of the federal stock assessment conducted in 2016 for Gulf of Mexico red drum were not recommended for providing management advice. Consequently, we sought to address data gaps highlighted in the assessment by producing up-to- date overall and sex-specific growth models, standardized indices of relative abundance, and predictions of habitat suitability and by updating estimates of natural mortality. Using a time series for the period of 2006–2018, we assigned ages of 0–36 years to 1178 red drum. A negative binomial generalized linear model including variables for year, depth, surface temperature, dissolved oxygen, and bottom salinity was used to standardize an index of relative abundance. Examination of catch per unit of effort revealed that adult red drum were significantly more abundant in state waters than in federal waters. These findings were explained by habitat suitability models, which were used to identify surface current velocity, surface temperature, and depth as the strongest predictors of relative abundance. The results of our investigation reveal that the adult spawning stock of red drum in the Gulf of Mexico is not fully protected by the catch moratorium in federal waters

    Swimming Against the Flow: Environmental DNA Can Detect Bull Sharks (\u3ci\u3eCarcharhinus leucas\u3c/i\u3e) Across a Dynamic Deltaic Interface

    Get PDF
    © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd Human activities in coastal areas are accelerating ecosystem changes at an unprecedented pace, resulting in habitat loss, hydrological modifications, and predatory species declines. Understanding how these changes potentially cascade across marine and freshwater ecosystems requires knowing how mobile euryhaline species link these seemingly disparate systems. As upper trophic level predators, bull sharks (Carcharhinus leucas) play a crucial role in marine and freshwater ecosystem health. Telemetry studies in Mobile Bay, Alabama, suggest that bull sharks extensively use the northern portions of the bay, an estuarine–freshwater interface known as the Mobile-Tensaw Delta. To assess whether bull sharks use freshwater habitats in this region, environmental DNA surveys were conducted during the dry summer and wet winter seasons in 2018. In each season, 5 × 1 L water samples were collected at each of 21 sites: five sites in Mobile Bay, six sites in the Mobile-Tensaw Delta, and ten sites throughout the Mobile-Tombigbee and Tensaw-Alabama Rivers. Water samples were vacuum-filtered, DNA extractions were performed on the particulate, and DNA extracts were analyzed with Droplet Digital™ Polymerase Chain Reaction using species-specific primers and an internal probe to amplify a 237-base pair fragment of the mitochondrial NADH dehydrogenase subunit 2 gene in bull sharks. One water sample collected during the summer in the Alabama River met the criteria for a positive detection, thereby confirming the presence of bull shark DNA. While preliminary, this finding suggests that bull sharks use less-urbanized, riverine habitats up to 120 km upriver during Alabama\u27s dry summer season

    Molecular basis for passive immunotherapy of Alzheimer's disease

    Get PDF
    Amyloid aggregates of the amyloid-{beta} (A{beta}) peptide are implicated in the pathology of Alzheimer's disease. Anti-A{beta} monoclonal antibodies (mAbs) have been shown to reduce amyloid plaques in vitro and in animal studies. Consequently, passive immunization is being considered for treating Alzheimer's, and anti-A{beta} mAbs are now in phase II trials. We report the isolation of two mAbs (PFA1 and PFA2) that recognize A{beta} monomers, protofibrils, and fibrils and the structures of their antigen binding fragments (Fabs) in complex with the A{beta}(1–8) peptide DAEFRHDS. The immunodominant EFRHD sequence forms salt bridges, hydrogen bonds, and hydrophobic contacts, including interactions with a striking WWDDD motif of the antigen binding fragments. We also show that a similar sequence (AKFRHD) derived from the human protein GRIP1 is able to cross-react with both PFA1 and PFA2 and, when cocrystallized with PFA1, binds in an identical conformation to A{beta}(1–8). Because such cross-reactivity has implications for potential side effects of immunotherapy, our structures provide a template for designing derivative mAbs that target A{beta} with improved specificity and higher affinity

    Run-Off Replication of Host-Adaptability Genes Is Associated with Gene Transfer Agents in the Genome of Mouse-Infecting Bartonella grahamii

    Get PDF
    The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella

    Assessing Implicit Odor Localization in Humans Using a Cross-Modal Spatial Cueing Paradigm

    Get PDF
    Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal.A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment.No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research.The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans
    corecore