67 research outputs found

    Phytochemicals as antibiotic alternatives to promote growth and enhance host health

    Get PDF
    There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12-15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.Fil: Lillehoj, Hyun. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Liu, Yanhong. University of California; Estados UnidosFil: Calsamiglia, Sergio. Universitat Autònoma de Barcelona; EspañaFil: Fernandez Miyakawa, Mariano Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; ArgentinaFil: Chi, Fang. Amlan International; Estados UnidosFil: Cravens, Ron L.. Amlan International; Estados UnidosFil: Oh, Sungtaek. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Gay, Cyril G.. United States Department of Agriculture. Agricultural Research Service; Argentin

    Non-hispanic whites have higher risk for pulmonary impairment from pulmonary tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disparities in outcomes associated with race and ethnicity are well documented for many diseases and patient populations. Tuberculosis (TB) disproportionately affects economically disadvantaged, racial and ethnic minority populations. Pulmonary impairment after tuberculosis (PIAT) contributes heavily to the societal burden of TB. Individual impacts associated with PIAT may vary by race/ethnicity or socioeconomic status.</p> <p>Methods</p> <p>We analyzed the pulmonary function of 320 prospectively identified patients with pulmonary tuberculosis who had completed at least 20 weeks standard anti-TB regimes by directly observed therapy. We compared frequency and severity of spirometry-defined PIAT in groups stratified by demographics, pulmonary risk factors, and race/ethnicity, and examined clinical correlates to pulmonary function deficits.</p> <p>Results</p> <p>Pulmonary impairment after tuberculosis was identified in 71% of non-Hispanic Whites, 58% of non-Hispanic Blacks, 49% of Asians and 32% of Hispanics (<it>p </it>< 0.001). Predictors for PIAT varied between race/ethnicity. PIAT was evenly distributed across all levels of socioeconomic status suggesting that PIAT and socioeconomic status are not related. PIAT and its severity were significantly associated with abnormal chest x-ray, <it>p </it>< 0.0001. There was no association between race/ethnicity and time to beginning TB treatment, <it>p </it>= 0.978.</p> <p>Conclusions</p> <p>Despite controlling for cigarette smoking, socioeconomic status and time to beginning TB treatment, non-Hispanic White race/ethnicity remained an independent predictor for disproportionately frequent and severe pulmonary impairment after tuberculosis relative to other race/ethnic groups. Since race/ethnicity was self reported and that race is not a biological construct: these findings must be interpreted with caution. However, because race/ethnicity is a proxy for several other unmeasured host, pathogen or environment factors that may contribute to disparate health outcomes, these results are meant to suggest hypotheses for further research.</p

    Bare Bones Pattern Formation: A Core Regulatory Network in Varying Geometries Reproduces Major Features of Vertebrate Limb Development and Evolution

    Get PDF
    BACKGROUND: Major unresolved questions regarding vertebrate limb development concern how the numbers of skeletal elements along the proximodistal (P-D) and anteroposterior (A-P) axes are determined and how the shape of a growing limb affects skeletal element formation. There is currently no generally accepted model for these patterning processes, but recent work on cartilage development (chondrogenesis) indicates that precartilage tissue self-organizes into nodular patterns by cell-molecular circuitry with local auto-activating and lateral inhibitory (LALI) properties. This process is played out in the developing limb in the context of a gradient of fibroblast growth factor (FGF) emanating from the apical ectodermal ridge (AER). RESULTS: We have simulated the behavior of the core chondrogenic mechanism of the developing limb in the presence of an FGF gradient using a novel computational environment that permits simulation of LALI systems in domains of varying shape and size. The model predicts the normal proximodistal pattern of skeletogenesis as well as distal truncations resulting from AER removal. Modifications of the model's parameters corresponding to plausible effects of Hox proteins and formins, and of the reshaping of the model limb, bud yielded simulated phenotypes resembling mutational and experimental variants of the limb. Hypothetical developmental scenarios reproduce skeletal morphologies with features of fossil limbs. CONCLUSIONS: The limb chondrogenic regulatory system operating in the presence of a gradient has an inherent, robust propensity to form limb-like skeletal structures. The bare bones framework can accommodate ancillary gene regulatory networks controlling limb bud shaping and establishment of Hox expression domains. This mechanism accounts for major features of the normal limb pattern and, under variant geometries and different parameter values, those of experimentally manipulated, genetically aberrant and evolutionary early forms, with no requirement for an independent system of positional information

    Dysbiotic drift: mental health, environmental grey space, and microbiota

    Get PDF

    Nurse-aid management of burns

    No full text
    corecore