1,566 research outputs found

    Relaxation processes in harmonic glasses?

    Full text link
    A relaxation process, with the associated phenomenology of sound attenuation and sound velocity dispersion, is found in a simulated harmonic Lennard-Jones glass. We propose to identify this process with the so called microscopic (or instantaneous) relaxation process observed in real glasses and supercooled liquids. A model based on the memory function approach accounts for the observation, and allows to relate to each others: 1) the characteristic time and strength of this process, 2) the low frequency limit of the dynamic structure factor of the glass, and 3) the high frequency sound attenuation coefficient, with its observed quadratic dependence on the momentum transfer.Comment: 11 pages, 3 figure

    Estimations of abundance of the eggs of the pacific pilchard (Sardinops caerulea) off southern California during 1940 and 1941

    Get PDF
    One of the more important items of information required for an understanding of the dynamics of population numbers in marine fish stocks is the rate of replenishment of the stock through its reproductive process. It has been established for the Pacific pilchard, or California sardine (Sardinops caerulea), that some spawning seasons give rise to much larger year-classes than others (Clark, 1939), as measured at the time the year-class reaches commercial age...

    High-frequency subsurface and bulk dynamics of liquid indium

    Get PDF
    We have performed bulk and surface-sensitive inelastic x-ray scattering experiments on liquid indium with 3 meV energy resolution. The experimental data are well reproduced within a generalized hydrodynamic model including structural and microscopic relaxation processes. We find a longitudinal viscosity of 22 mPa s in the near-surface region compared to 7.4 mPa s in the bulk. The origin of the increase is associated with a slowing down of the collective dynamics in a subsurface region of 4.6 nm. © 2007 The American Physical Society

    Elastic constant dishomogeneity and Q2Q^2 dependence of the broadening of the dynamical structure factor in disordered systems

    Full text link
    We propose an explanation for the quadratic dependence on the momentum QQ, of the broadening of the acoustic excitation peak recently found in the study of the dynamic structure factor of many real and simulated glasses. We ascribe the observed Q2Q^2 law to the spatial fluctuations of the local wavelength of the collective vibrational modes, in turn produced by the dishomegeneity of the inter-particle elastic constants. This explanation is analitically shown to hold for 1-dimensional disordered chains and satisfatorily numerically tested in both 1 and 3 dimensions.Comment: 4 pages, RevTeX, 5 postscript figure

    Crystal-like high frequency phonons in the amorphous phases of solid water

    Full text link
    The high frequency dynamics of low- (LDA) and high-density amorphous-ice (HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering (IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like excitations are observed, and the longitudinal acoustic branch is identified up to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of these excitations is in sharp contrast with the broad features observed in all amorphous systems studied so far. The "crystal-like" behavior of amorphous ices, therefore, implies a considerable reduction in the number of decay channels available to sound-like excitations which is assimilated to low local disorder.Comment: 4 pages, 3 figure

    High frequency longitudinal and transverse dynamics in water

    Full text link
    High-resolution, inelastic x-ray scattering measurements of the dynamic structure factor S(Q,\omega) of liquid water have been performed for wave vectors Q between 4 and 30 nm^-1 in distinctly different thermodynamic conditions (T= 263 - 420 K ; at, or close to, ambient pressure and at P = 2 kbar). In agreement with previous inelastic x-ray and neutron studies, the presence of two inelastic contributions (one dispersing with Q and the other almost non-dispersive) is confirmed. The study of their temperature- and Q-dependence provides strong support for a dynamics of liquid water controlled by the structural relaxation process. A viscoelastic analysis of the Q-dispersing mode, associated with the longitudinal dynamics, reveals that the sound velocity undergoes the complete transition from the adiabatic sound velocity (c_0) (viscous limit) to the infinite frequency sound velocity (c_\infinity) (elastic limit). On decreasing Q, as the transition regime is approached from the elastic side, we observe a decrease of the intensity of the second, weakly dispersing feature, which completely disappears when the viscous regime is reached. These findings unambiguously identify the second excitation to be a signature of the transverse dynamics with a longitudinal symmetry component, which becomes visible in the S(Q,\omega) as soon as the purely viscous regime is left.Comment: 28 pages, 12 figure

    Phonon-like and single particle dynamics in liquid lithium

    Full text link
    The dynamic structure factor, S(Q,E), of liquid lithium (T=475 K) has been determined by inelastic x-ray scattering (IXS) in the momentum transfer region (Q = 1.4-110 nm-1). These data allow to observe how, in a simple liquid, a phonon-like collective mode evolves towards the single particle dynamics. As a function of Q, one finds: i) at low Q's, a sound mode with a positive dispersion of the sound velocity, ii) at intermediate Q's, excitations whose energy oscillates similarly to phonons in the crystal Brillouin zones, and iii) at high Q's, the S(Q,E) approaches a Gaussian shape, indicating that the single particle dynamics has been reached.Comment: 3 pages and 5 figure

    Enhanced electrocaloric efficiency via energy recovery.

    Get PDF
    Materials that show large and reversible electrically driven thermal changes near phase transitions have been proposed for cooling applications, but energy efficiency has barely been explored. Here we reveal that most of the work done to drive representative electrocaloric cycles does not pump heat and may therefore be recovered. Initially, we recover 75-80% of the work done each time BaTiO3-based multilayer capacitors drive electrocaloric effects in each other via an inductor (diodes prevent electrical resonance while heat flows after each charge transfer). For a prototype refrigerator with 24 such capacitors, recovering 65% of the work done to drive electrocaloric effects increases the coefficient of performance by a factor of 2.9. The coefficient of performance is subsequently increased by reducing the pumped heat and recovering more work. Our strategy mitigates the advantage held by magnetocaloric prototypes that exploit automatic energy recovery, and should be mandatory in future electrocaloric cooling devices
    • …
    corecore