590 research outputs found

    DEEP LEARNING FOR CT IMAGES SEGMENTATION

    No full text
    Introduction/Justification: Computed tomography (CT) scans are integral to cancer patient diagnosis, revealing changes in body composition linked to survival progression. The conventional approach to body composition analysis using CT scans is labor-intensive and expensive, demanding skilled professionals and licensed software for manual segmentation of Regions of Interest (ROIs). To address these challenges, we introduce a Deep Learning algorithm designed for automated CT image segmentation, presenting an efficient alternative that overcomes the limitations of the current methodology. Beyond the advantages of speed, automation enhances result uniformity and enables uncertainty estimation. In this presentation, we will show preliminary results from our algorithm, highlighting its potential contributions to survival analysis in cancer patients. Objectives: The primary goal of this study was to develop an automated segmentation algorithm for CT scans using Deep Learning models. Materials and Methods: In developing segmentation algorithms, a dataset of 453 CT slices at the L3 lumbar vertebral level from gastric cancer patients was utilized, with an 80% training and 20% testing partition. Employing the UNET+ResNet18 deep learning architecture, supervised training utilized manually generated segmentation masks as references. Four dedicated UNET+ResNet18 algorithms were trained for distinct ROIs: Skeletal Muscle (SM), Intramuscular Adipose Tissue (IMAT), Visceral Adipose Tissue (VAT), and Subcutaneous Adipose Tissue (SAT). Segmentation performance on the test set was evaluated using the Dice Coefficient, underestimation and overestimation percentages, Bland-Altman analyses, and qualitative visual inspection of segmented images. Results: The UNet+ResNet18 models demonstrated superior segmentation performance for SM, VAT, and SAT, achieving mean Dice scores exceeding 0.95. In comparison to manual segmentation, the Deep Learning algorithm exhibited minor average underestimations and overestimations, both below 5% for these tissues. However, IMAT segmentation exhibited relatively lower performance, with a mean Dice score of approximately 0.86 and underestimation and overestimation percentages around 15% and 13%, respectively. The Bland-Altman analysis revealed mean bias and limits of agreement for mean radiodensities of SM, VAT, SAT, and IMAT as follows: 0.14 [-0.82, 1.10] HU, -0.53 [-2.03, 0.98] HU, -0.18 [-1.70, 1.33] HU, and 0.48 [-3.86, 4.82] HU, respectively. Conclusion: The Deep Learning approach provides a standard and fast solution for CT image segmentation, demonstrating good results for SM, VAT and SAT. For these tissues, derived radiomics features could provide valuable insights into the analysis of cancer patient outcomes. Further studies are necessary for enhancing IMAT segmentation, given its challenging small area. Additionally, future investigations should focus on uncertainty estimation in CT images, exploring its impact on segmentation procedures and radiomic feature extraction

    Measurement of the production cross section of prompt Ξc0\Xi^0_{\rm c} baryons in p-Pb collisions at sNN = 5.02\sqrt{s_{\mathrm{NN}}}~=~5.02 TeV

    No full text
    International audienceThe transverse momentum (pTp_{\rm T}) differential production cross section of the promptly-produced charm-strange baryon Ξc0\Xi_{\rm c}^{0} (and its charge conjugate Ξc0\overline{\Xi_{\rm c}^{0}}) is measured at midrapidity via its hadronic decay into π+Ξ{\rm \pi^{+}}\Xi^{-} in p-Pb collisions at a centre-of-mass energy per nucleon-nucleon collision sNN = 5.02\sqrt{s_{\mathrm{NN}}}~=~5.02 TeV with the ALICE detector at the LHC. The Ξc0\Xi_{\rm c}^{0} nuclear modification factor (RpPbR_{\rm pPb}), calculated from the cross sections in pp and p-Pb collisions, is presented and compared with the RpPbR_{\rm pPb} of Λc+\Lambda_{\rm c}^{+} baryons. The ratios between the pTp_{\rm T}-differential production cross section of Ξc0\Xi_{\rm c}^{0} baryons and those of D0\mathrm {D^0} mesons and Λc+\Lambda_{\rm c}^{+} baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξc0\Xi^0_{\rm c} baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p-Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pTp_{\rm T}-integrated cross section of prompt Ξc0\Xi^0_{\rm c}-baryon production at midrapidity extrapolated down to pTp_{\rm T} = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p-Pb collisions at midrapidity

    Data-driven precision determination of the material budget in ALICE

    No full text
    International audienceThe knowledge of the material budget with a high precision is fundamental for measurements of direct photon production using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed. One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of the overall material budget systematic uncertainty from 4.5% down to 2.5%. Using these methods, a locally correct material budget is also achieved. The two proposed methods are generic and can be applied to any experiment in a similar fashion

    Study of the p-p-K+^+ and p-p-K^- dynamics using the femtoscopy technique

    No full text
    International audienceThe interactions of kaons (K) and antikaons (K\mathrm{\overline{K}}) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and K\mathrm{\overline{K}}NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p-p-K+^+ and p-p-K^- correlations measured in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV by the ALICE Collaboration. The analysis shows that the measured p-p-K+^+ and p-p-K^- correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states

    Measurements of jet quenching using semi-inclusive hadron+jet distributions in pp and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) charged hadron, in pp and central Pb-Pb collisions at center of mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach, which enables precise measurement of recoil jet distributions over a broad range in pT,chjetp_{\rm T,ch\,jet} and jet resolution parameter RR. Recoil jet yields are reported for R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,chjet<1407 < p_{\rm T,ch\, jet} < 140 GeV/c/c and π/2<Δφ<π\pi/2<\Delta\varphi<\pi, where Δφ\Delta\varphi is the azimuthal angular separation between hadron trigger and recoil jet. The low pT,chjetp_{\rm T,ch\,jet} reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark-gluonnplasma generated in high-energy nuclear collisions. Comparison of pT,chjetp_{\rm T,ch\,jet} distributions from pp and central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching.The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) charged hadron, in pp and central Pb-Pb collisions at center of mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach, which enables precise measurement of recoil jet distributions over a broad range in pT,chjetp_{\rm T,ch\,jet} and jet resolution parameter RR. Recoil jet yields are reported for R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,chjet<1407 < p_{\rm T,ch\, jet} < 140 GeV/c/c and π/2<Δφ<π\pi/2<\Delta\varphi<\pi, where Δφ\Delta\varphi is the azimuthal angular separation between hadron trigger and recoil jet. The low pT,chjetp_{\rm T,ch\,jet} reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark-gluonnplasma generated in high-energy nuclear collisions. Comparison of pT,chjetp_{\rm T,ch\,jet} distributions from pp and central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching

    Dielectron production in central Pb-Pb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV

    No full text
    International audienceThe first measurement of the e+^+e^- pair production at midrapidity and low invariant mass in central Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV at the LHC is presented. The yield of e+^+e^- pairs is compared with a cocktail of expected hadronic decay contributions in the invariant mass (meem_{\rm ee}) and pair transverse momentum (pT,eep_{\rm T,ee}) ranges mee<3.5m_{\rm ee} < 3.5 GeV/c2/c^2 and pT,ee<8p_{\rm T,ee} < 8 GeV/c/c. For 0.18<mee<0.50.18 < m_{\rm ee} < 0.5 GeV/c2/c^2 the ratio of data to the cocktail of hadronic contributions without ρ\rho mesons amounts to 1.42±0.12 (stat.)±0.17 (syst.)±0.12 (cocktail)1.42 \pm 0.12 \ ({\rm stat.}) \pm 0.17 \ ({\rm syst.}) \pm 0.12 \ ({\rm cocktail}) and 1.44±0.12 (stat.)±0.17 (syst.)0.21+0.17 (cocktail)1.44 \pm 0.12 \ ({\rm stat.}) \pm 0.17 \ ({\rm syst.}) ^{+0.17}_{-0.21} \ ({\rm cocktail}), including or not including medium effects in the estimation of the heavy-flavor background, respectively. It is consistent with predictions from two different models for an additional contribution of thermal e+^+e^- pairs from the hadronic and partonic phases. In the intermediate-mass range (1.2<mee<2.61.2 < m_{\rm ee} < 2.6 GeV/c2/c^2), the pair transverse impact parameter of the e+^+e^- pairs (DCAee_{\rm ee}) is used for the first time in Pb-Pb collisions to separate displaced dielectrons from heavy-flavor hadron decays from a possible (thermal) contribution produced at the interaction point. The data are consistent with a suppression of e+^+e^- pairs from cc{\rm c\overline{c}} and an additional prompt component. Finally, the first direct-photon measurement in the 10% most central Pb-Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV is reported via the study of virtual direct photons in the transverse momentum range 1<pT<51 < p_{\rm T} < 5 GeV/c/c. A model including prompt photons, as well as photons from the pre-equilibrium and fluid-dynamic phases, can reproduce the result, while being at the upper edge of the data uncertainties

    System size dependence of hadronic rescattering effect at LHC energies

    No full text
    International audienceThe first measurements of K(892)0\mathrm{K^{*}(892)^{0}} resonance production as a function of charged-particle multiplicity in Xe-Xe collisions at sNN=\sqrt{s_{\mathrm{NN}}}= 5.44 TeV and pp collisions at s=\sqrt{s}= 5.02 TeV using the ALICE detector are presented. The resonance is reconstructed at midrapidity (y<0.5|y|< 0.5) using the hadronic decay channel K0K±π\mathrm{K^{*0}} \rightarrow \mathrm{K^{\pm} \pi^{\mp}}. Measurements of transverse-momentum integrated yield, mean transverse-momentum, nuclear modification factor of K0\mathrm{K^{*0}}, and yield ratios of resonance to stable hadron (K0\mathrm{K^{*0}}/K) are compared across different collision systems (pp, p-Pb, Xe-Xe, and Pb-Pb) at similar collision energies to investigate how the production of K0\mathrm{K^{*0}} resonances depends on the size of the system formed in these collisions. The hadronic rescattering effect is found to be independent of the size of colliding systems and mainly driven by the produced charged-particle multiplicity, which is a proxy of the volume of produced matter at the chemical freeze-out. In addition, the production yields of K0\mathrm{K^{*0}} in Xe-Xe collisions are utilized to constrain the dependence of the kinetic freeze-out temperature on the system size using HRG-PCE model

    Measurement of inclusive charged-particle jet production in pp and p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceMeasurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV and the corresponding nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region ηjet<0.5|\eta_{\rm jet}| < 0.5 from charged particles using the anti-kTk_{\rm T} algorithm with resolution parameters R=0.2R = 0.2, 0.3, and 0.4. The pTp_{\rm T}-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross-section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc and 10<pT,jetch<16010 < p^{\rm ch}_{\rm T,jet} < 160 GeV/cc, respectively, together with the nuclear modification factor RpPbchjetR_{\rm pPb}^{\rm ch\,jet} in the range 10<pT,jetch<14010 < p^{\rm ch}_{\rm T,jet} < 140 GeV/cc. The analysis extends the pTp_{\rm T} range of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD POWHEG calculations with parton shower provided by PYTHIA8 as well as by JETSCAPE simulations

    Studying strangeness and baryon production mechanisms through angular correlations between charged Ξ\Xi baryons and identified hadrons in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe angular correlations between charged Ξ\Xi baryons and associated identified hadrons (pions, kaons, protons, Λ\Lambda baryons, and Ξ\Xi baryons) are measured in pp collisions at s=13\sqrt{s} = 13 TeV with the ALICE detector to give insight into the particle production mechanisms and balancing of quantum numbers on the microscopic level. In particular, the distribution of strangeness is investigated in the correlations between the doubly-strange Ξ\Xi baryon and mesons and baryons that contain a single strange quark, K and Λ\Lambda. As a reference, the results are compared to Ξπ\Xi\pi and Ξp\Xi\mathrm{p} correlations, where the associated mesons and baryons do not contain a strange valence quark. These measurements are expected to be sensitive to whether strangeness is produced through string breaking or in a thermal production scenario. Furthermore, the multiplicity dependence of the correlation functions is measured to look for the turn-on of additional particle production mechanisms with event activity. The results are compared to predictions from the string-breaking model PYTHIA 8, including tunes with baryon junctions and rope hadronisation enabled, the cluster hadronisation model HERWIG 7, and the core-corona model EPOS-LHC. While some aspects of the experimental data are described quantitatively or qualitatively by the Monte Carlo models, no one model can match all features of the data. These results provide stringent constraints on the strangeness and baryon number production mechanisms in pp collisions

    Common femtoscopic hadron-emission source in pp collisions at the LHC

    No full text
    International audienceThe femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at s=13\sqrt{s} = 13 TeV from charged π\pi-π\pi correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass (mTm_{\rm T}) of the pairs, leading to the observation of a common scaling for both π\pi-π\pi and K-p, suggesting a collective effect. Further, the present results are compatible with the mTm_{\rm T} scaling of the p-p and pΛ-\Lambda primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles
    corecore