46 research outputs found
Non-nutritive Sweeteners Induce Hypothalamic ER Stress Causing Abnormal Axon Outgrowth
International audienceWith the prevalence of obesity, non-nutritive sweeteners (NNS) have been widely used as sugar substitutes as they deliver a sweet taste without excessive caloric load. However, it is increasingly recognized that NNS are not inert compounds and may cause long-term metabolic perturbations. Endoplasmic reticulum (ER) stress has emerged as a critical link in the development of obesity and type 2 diabetes. In this study, we investigated the effects of NNS found in common diet beverages (i.e., sucralose, aspartame, acesulfame potassium) and a natural sweetener (i.e., rebaudioside A) on ER stress in the hypothalamic cell line mHypoE-N43/5 in vivo and on axonal outgrowth ex vivo. Sucralose, aspartame, and acesulfame potassium caused elevated ER stress gene expression in mHypoE-N43/5 cells, with sucralose and acesulfame potassium having the most potent effect. Moreover, acesulfame potassium treatment reduced axon outgrowth from arcuate nucleus explants and this effect was attenuated with the ER stress-relieving drug tauroursodeoxycholic acid. Furthermore, sucralose induced cytotoxicity and acesulfame potassium increases caspase3/7 activity at high concentrations in mHypoE-N43/5 cells. In contrast, rebaudioside A only had moderate effects on hypothalamic ER stress and no adverse effects on axon outgrowth, cytotoxicity, or caspase3/7 activity. Together, our data reveal that commonly consumed NNS cause cellular stress in hypothalamic cells disrupting axon outgrowth and that these biological alterations are not seen with rebaudioside A. These data provide biological plausibility for some NNS to adversely impact metabolic health and identifies rebaudioside A as a sweetener with lower detrimental biological impact on hypothalamic cells
Recommended from our members
The developmental neurotoxicity of legacy vs. contemporary polychlorinated biphenyls (PCBs): similarities and differences.
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans
Recommended from our members
The developmental neurotoxicity of legacy vs. contemporary polychlorinated biphenyls (PCBs): similarities and differences.
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans