521 research outputs found

    Exhaled Interleukine-6 and 8-isoprostane in chronic obstructive pulmonary disease: effect of carbocysteine lysine salt monohydrate (SCMC-Lys).

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is characterized by an airways inflammation and by an enhanced generation of reactive oxygen species. The aim of our study was to assess the inflammation and the oxidative stress in airways of COPD patients with acute exacerbation of disease and in stability. Furthermore, we investigated the anti-inflammatory and antioxidant effects of 6 months treatment with carbocysteine lysine salt monohydrate (SCMC-Lys) in COPD. We studied 30 mild acute COPD, 10 mild stable COPD and 15 healthy subjects. 8-isoprostane and Interleukine-6 were measured in their breath condensate through immunoassay. Significantly higher concentrations of exhaled 8-isoprostane and Interleukine-6 were found in acute COPD patients compared to stable COPD and healthy controls (21.8+/-5.1 vs. 13.2+/-2.0 vs. 4.7+/-1.8 pg/ml and 7.4+/-0.9 vs. 5.8+/-0.2 vs. 2.7+/-0.6 pg/ml, p<0.0001). COPD patients treated with SCMC-Lys showed a marked reduction of exhaled 8-isoprostane and Interleukine-6 (8.9+/-1.5 and 4.6+/-0.8 pg/ml, p<0.0001). These findings suggest that there is an increase of 8-isoprostane and Interleukine-6 concentrations in the breath condensate of COPD patients compared to healthy controls especially during acute exacerbations of the disease. Moreover, we showed an anti-inflammatory and antioxidant effect of short-term administration of SCMC-Lys in COPD, suggesting the importance of a further placebo-controlled study that should evaluate the effects of this drug

    Ultramicronized palmitoylethanolamide rescues learning and memory impairments in a triple transgenic mouse model of Alzheimer's disease by exerting anti-inflammatory and neuroprotective effects

    Get PDF
    In an aging society, Alzheimer’s disease (AD) exerts an increasingly serious health and economic burden. Current treatments provide inadequate symptomatic relief as several distinct pathological processes are thought to underlie the decline of cognitive and neural function seen in AD. This suggests that the efficacy of treatment requires a multitargeted approach. In this context, palmitoylethanolamide (PEA) provides a novel potential adjunct therapy that can be incorporated into a multitargeted treatment strategy. We used young (6-month-old) and adult (12-month-old) 3×Tg-AD mice that received ultramicronized PEA (um-PEA) for 3 months via a subcutaneous delivery system. Mice were tested with a range of cognitive and noncognitive tasks, scanned with magnetic resonance imaging/magnetic resonance spectroscopy (MRI/MRS), and neurochemical release was assessed by microdialysis. Potential neuropathological mechanisms were assessed postmortem by western blot, reverse transcription–polymerase chain reaction (RT-PCR), and immunofluorescence. Our data demonstrate that um-PEA improves learning and memory, and ameliorates both the depressive and anhedonia-like phenotype of 3×Tg-AD mice. Moreover, it reduces Aβ formation, the phosphorylation of tau proteins, and promotes neuronal survival in the CA1 subregion of the hippocampus. Finally, um-PEA normalizes astrocytic function, rebalances glutamatergic transmission, and restrains neuroinflammation. The efficacy of um-PEA is particularly potent in younger mice, suggesting its potential as an early treatment. These data demonstrate that um-PEA is a novel and effective promising treatment for AD with the potential to be integrated into a multitargeted treatment strategy in combination with other drugs. Um-PEA is already registered for human use. This, in combination with our data, suggests the potential to rapidly proceed to clinical use

    Molecular mechanisms involved in HCC recurrence after direct-acting antiviral therapy

    Get PDF
    Chronic hepatitis C is associated with a high risk of developing hepatocellular carcinoma (HCC) because of a direct effect of the Hepatitis C Virus (HCV) proteins and an indirect oncogenic effect of chronic inflammation and impaired immune response. The treatment of chronic hepatitis C markedly reduces all-cause mortality; in fact, interferon-based treatment has shown a reduction of HCC incidence of more than 70%. The recent introduction of the highly effective direct-acting antivirals (DAAs) has completely changed the scenario of chronic hepatitis C (CHC) with rates of HCV cure over 90%. However, an unexpectedly high incidence of HCC recurrence was observed in patients after DAA treatment (27% versus 0.4–2% in patients who received interferon treatment). The mechanism that underlies the high rate of tumor relapse is currently unknown and is one of the main issues in hepatology. We reviewed the possible mechanisms involved in HCC recurrence after DAA treatment

    Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) spectrum disorders affect approximately 1 billion individuals worldwide. However, the drivers of progressive steatohepatitis remain incompletely defined. Ketogenesis can dispose of much of the fat that enters the liver, and dysfunction in this pathway could promote the development of NAFLD. Here, we evaluated mice lacking mitochondrial 3-hydroxymethylglutaryl CoA synthase (HMGCS2) to determine the role of ketogenesis in preventing diet-induced steatohepatitis. Antisense oligonucleotide–induced loss of HMGCS2 in chow-fed adult mice caused mild hyperglycemia, increased hepatic gluconeogenesis from pyruvate, and augmented production of hundreds of hepatic metabolites, a suite of which indicated activation of the de novo lipogenesis pathway. High-fat diet feeding of mice with insufficient ketogenesis resulted in extensive hepatocyte injury and inflammation, decreased glycemia, deranged hepatic TCA cycle intermediate concentrations, and impaired hepatic gluconeogenesis due to sequestration of free coenzyme A (CoASH). Supplementation of the CoASH precursors pantothenic acid and cysteine normalized TCA intermediates and gluconeogenesis in the livers of ketogenesis-insufficient animals. Together, these findings indicate that ketogenesis is a critical regulator of hepatic acyl-CoA metabolism, glucose metabolism, and TCA cycle function in the absorptive state and suggest that ketogenesis may modulate fatty liver disease

    Lipid metabolism in development and progression of hepatocellular carcinoma

    Get PDF
    Metabolic reprogramming is critically involved in the development and progression of cancer. In particular, lipid metabolism has been investigated as a source of energy, micro-environmental adaptation, and cell signalling in neoplastic cells. However, the specific role of lipid metabolism dysregulation in hepatocellular carcinoma (HCC) has not been widely described yet. Alterations in fatty acid synthesis, β-oxidation, and cellular lipidic composition contribute to initiation and progression of HCC. The aim of this review is to elucidate the mechanisms by which lipid metabolism is involved in hepatocarcinogenesis and tumour adaptation to different conditions, focusing on the transcriptional aberrations with new insights in lipidomics and lipid zonation. This will help detect new putative therapeutic approaches in the second most frequent cause of cancer-related death

    Factors affecting adherence to guidelines for antithrombotic therapy in elderly patients with atrial fibrillation admitted to internal medicine wards

    Get PDF
    Current guidelines for ischemic stroke prevention in atrial fibrillation or flutter (AFF) recommend Vitamin K antagonists (VKAs) for patients at high-intermediate risk and aspirin for those at intermediate-low risk. The cost-effectiveness of these treatments was demonstrated also in elderly patients. However, there are several reports that emphasize the underuse of pharmacological prophylaxis of cardio-embolism in patients with AFF in different health care settings. AIMS: To evaluate the adherence to current guidelines on cardio-embolic prophylaxis in elderly (> 65 years old) patients admitted with an established diagnosis of AFF to the Italian internal medicine wards participating in REPOSI registry, a project on polypathologies/polytherapies stemming from the collaboration between the Italian Society of Internal Medicine and the Mario Negri Institute of Pharmacological Research; to investigate whether or not hospitalization had an impact on guidelines adherence; to test the role of possible modifiers of VKAs prescription. METHODS: We retrospectively analyzed registry data collected from January to December 2008 and assessed the prevalence of patients with AFF at admission and the prevalence of risk factors for cardio-embolism. After stratifying the patients according to their CHADS(2) score the percentage of appropriateness of antithrombotic therapy prescription was evaluated both at admission and at discharge. Univariable and multivariable logistic regression models were employed to verify whether or not socio-demographic (age >80years, living alone) and clinical features (previous or recent bleeding, cranio-facial trauma, cancer, dementia) modified the frequency and modalities of antithrombotic drugs prescription at admission and discharge. RESULTS: Among the 1332 REPOSI patients, 247 were admitted with AFF. At admission, CHADS(2) score was ≥ 2 in 68.4% of patients, at discharge in 75.9%. Among patients with AFF 26.5% at admission and 32.8% at discharge were not on any antithrombotic therapy, and 43.7% at admission and 40.9% at discharge were not taking an appropriate therapy according to the CHADS(2) score. The higher the level of cardio-embolic risk the higher was the percentage of antiplatelet- but not of VKAs-treated patients. At admission or at discharge, both at univariable and at multivariable logistic regression, only an age >80 years and a diagnosis of cancer, previous or active, had a statistically significant negative effect on VKAs prescription. Moreover, only a positive history of bleeding events (past or present) was independently associated to no VKA prescription at discharge in patients who were on VKA therapy at admission. If heparin was considered as an appropriate therapy for patients with indication for VKAs, the percentage of patients admitted or discharged on appropriate therapy became respectively 43.7% and 53.4%. CONCLUSION: Among elderly patients admitted with a diagnosis of AFF to internal medicine wards, an appropriate antithrombotic prophylaxis was taken by less than 50%, with an underuse of VKAs prescription independently of the level of cardio-embolic risk. Hospitalization did not improve the adherence to guideline

    Id2 leaves the chromatin of the E2F4-p130-controlled c-myc promoter during hepatocyte priming for liver regeneration

    Get PDF
    The Id (inhibitor of DNA binding or inhibitor of differentiation) helix-loop-helix proteins are involved in the regulation of cell growth, differentiation and cancer. The fact that the molecular mechanisms of liver regeneration are not completely understood prompted us to study the fate of Id2 in proliferating liver. Id2 increases in liver regeneration after partial hepatectomy, following the early induction of its gene. Co-immunoprecipitation shows that Id2 forms a complex with E2F4, p130 and mSin3A in quiescent liver and all these components are present at the c-myc promoter as shown using ChIP (chromatin immunoprecipitation). Activation of c-myc during hepatocyte priming (G0-G1 transition) correlates with the dissociation of Id2 and HDAC (histone deacetylase), albeit p130 remains bound at least until 6 h. Moreover, as the G0-G1 transition progresses, Id2 and HDAC again bind the c-myc promoter concomitantly with the repression of this gene. The time course of c-myc binding to the Id2 promoter, as determined by ChIP assays is compatible with a role of the oncoprotein as a transcriptional inducer of Id2 in liver regeneration. Immunohistochemical analysis shows that Id2 also increases in proliferating hepatocytes after bile duct ligation. In this case, the pattern of Id2 presence in the c-myc promoter parallels that found in regenerating liver. Our results may suggest a control role for Id2 in hepatocyte priming, through a p130 dissociation-independent regulation of c-my

    Molecular Aspects and Treatment of Iron Deficiency in the Elderly

    Get PDF
    Iron deficiency (ID) is the most frequent nutritional deficiency in the whole population worldwide, and the second most common cause of anemia in the elderly. The prevalence of anemia is expecting to rise shortly, because of an ageing population. Even though WHO criteria define anemia as a hemoglobin serum concentration &lt;12 g/dL in women and &lt;13 g/dL in men, several authors propose different and specific cut-off values for the elderly. Anemia in aged subjects impacts health and quality of life, and it is associated with several negative outcomes, such as longer time of hospitalization and a higher risk of disability. Furthermore, it is an independent risk factor of increased morbidity and mortality. Even though iron deficiency anemia is a common disorder in older adults, it should be not considered as a normal ageing consequence, but a sign of underlying dysfunction. Relating to the molecular mechanism in Iron Deficiency Anemia (IDA), hepcidin has a key role in iron homeostasis. It downregulates the iron exporter ferroportin, inhibiting both iron absorption and release. IDA is frequently dependent on blood loss, especially caused by gastrointestinal lesions. Thus, a diagnostic algorithm for IDA should include invasive investigation such as endoscopic procedures. The treatment choice is influenced by the severity of anemia, underlying conditions, comorbidities, and the clinical state of the patient. Correction of anemia and iron supplementation should be associated with the treatment of the causal disease

    Reprogramming of hepatic fat accumulation and 'browning' of adipose tissue by the short-chain fatty acid acetate

    Get PDF
    Background/Objectives: Short-chain fatty acids, produced by microbiome fermentation of carbohydrates, have been linked to a reduction in appetite, body weight and adiposity. However, determining the contribution of central and peripheral mechanisms to these effects has not been possible. Subjects/Methods:C57BL/6 mice fed with either normal or high-fat diet were treated with nanoparticle-delivered acetate, and the effects on metabolism were investigated. Results:In the liver, acetate decreased lipid accumulation and improved hepatic function, as well as increasing mitochondrial efficiency. In white adipose tissue, it inhibited lipolysis and induced 'browning', increasing thermogenic capacity that led to a reduction in body adiposity. Conclusions:This study provides novel insights into the peripheral mechanism of action of acetate, independent of central action, including ‘browning’ and enhancement of hepatic mitochondrial function
    corecore