17 research outputs found

    Measuring intradialyser transmembrane and hydrostatic pressures: pitfalls and relevance in haemodialysis and haemodiafiltration

    No full text
    International audienceBackground Post-dilutional haemodiafiltration (HDF) with high convection volumes (HCVs) could improve survival. HCV-HDF requires a significant pressure to be applied to the dialyser membrane. The aim of this study was to assess the pressure applied to the dialysers in HCV-HDF, evaluate the influence of transmembrane pressure (TMP) calculation methods on TMP values and check how they relate to the safety limits proposed by guidelines. Methods Nine stable dialysis patients were treated with post-dilutional HCV-HDF with three different convection volumes [including haemodialysis (HD)]. The pressures at blood inlet (Bi), blood outlet (Bo) and dialysate outlet (Do) were continuously recorded. TMP was calculated using two pressures (TMP2: Bo, Do) or three pressures (TMP3: Bo, Do, Bi). Dialysis parameters were analysed at the start of the session and at the end of treatment or at the first occurrence of a manual intervention to decrease convection due to TMP alarms. Results During HD sessions, TMP2 and TMP3 remained stable. During HCV-HDF, TMP2 remained stable while TMP3 clearly increased. For the same condition, TMP3 could be 3-fold greater than TMP2. This shows that the TMP limit of 300 mmHg as recommended by guidelines could have different effects according to the TMP calculation method. In HCV-HDF, the pressure at the Bi increased over time and exceeded the safety limits of 600 mmHg provided by the manufacturer, even when respecting TMP safety limits. Conclusions This study draws our attention to the dangers of using a two-pressure points TMP calculation, particularly when performing HCV-HDF

    The CKD plasma lipidome varies with disease severity and outcome

    No full text
    International audienceBackground: Various alterations in lipid metabolism have been observed in patients with chronic kidney disease (CKD).Objectives: To determine the levels of lipid species in plasma from CKD and hemodialysis (HD) patients and test their association with CKD severity and patient outcome.Methods: Seventy-seven patients with CKD stage 2 to HD were grouped into classes of CKD severity at baseline and followed-up for 3.5 years for the occurrence of transition to HD or death (combined outcome). Plasma levels of phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), sphingomyelins (SMs), and fatty acids were analyzed by flow-injection analysis coupled to tandem mass spectrometry or gas chromatography coupled with mass spectrometry. Kruskal Wallis rank tests and Cox regressions were used to analyze the association of lipids with CKD severity and the risk of combined outcome, respectively.Results: The plasma level of PCs, LPCs, and SMs was decreased in HD patients compared with nondialyzed CKD patients (all P < .05), whereas esterified and/or nonesterified fatty acids level did not change. Thirty-four lipids displayed significantly lower abundance in plasma of HD patients, whereas elaidic acid (C18:1ω9t) level was increased (P < .001). The total amount of LPCs and individual LPCs were associated with better outcome (P < .05). In particular, LPC 18:2 and LPC 20:3 were statistically associated with outcome in adjusted models (P < .05).Discussion: In HD patients, a reduction in plasma lipids is observed. Some of the alterations, namely reduced LPCs, were associated with the risk of adverse outcome. These changes could be related to metabolic dysfunctions

    Consequences of increasing convection onto patient care and protein removal in hemodialysis.

    No full text
    INTRODUCTION:Recent randomised controlled trials suggest that on-line hemodiafiltration (OL-HDF) improves survival, provided that it reaches high convective volumes. However, there is scant information on the feasibility and the consequences of modifying convection volumes in clinics. METHODS:Twelve stable dialysis patients were treated with high-flux 1.8 m2 polysulphone dialyzers and 4 levels of convection flows (QUF) based on GKD-UF monitoring of the system, for 1 week each. The consequences on dialysis delivery (transmembrane pressure (TMP), number of alarms, % of achieved prescribed convection) and efficacy (mass removal of low and high molecular weight compounds) were analysed. RESULTS:TMP increased exponentially with QUF (p56,000 monitoring values). Beyond 21 L/session, this resulted into frequent TMP alarms requiring nursing staff interventions (mean ± SEM: 10.3 ± 2.2 alarms per session, p 20L) is feasible by setting an HDF system at its optimal conditions based upon the GKD-UF monitoring. Prescribing higher convection volumes resulted in instability of the system, provoked alarms, was bothersome for the nursing staff and the patients, rarely achieved the prescribed convection volumes and increased removal of high molecular weight compounds, notably albumin

    Geographical Variations in Blood Pressure Level and Seasonality in Hemodialysis Patients

    No full text
    Seasons and climate influence the regulation of blood pressure (BP) in the general population and in hemodialysis patients. It is unknown whether this phenomenon varies across the world. Our objective was to estimate BP seasonality in hemodialysis patients from different geographical locations. Patients from 7 European countries (Spain, Italy, France, Belgium, Germany, United Kingdom, and Sweden) participating in the DOPPS (Dialysis Outcomes and Practice Patterns Study) on years 2005 to 2011 were studied. Factors influencing pre- and postdialysis systolic BP and diastolic BP levels were analyzed by mixed models. There were 9655 patients (median age, 68; 59% male) from 263 facilities, seen every 4 months during a median duration of 1.3 years. Pre- and postdialysis systolic BP increased by a mean estimate of 5.1 mmHg (95% confidence interval [CI], 3.7-6.4 mmHg) and 4.4 mmHg (95% CI, 2.9-5.9 mmHg) for each 10 degrees increase in latitude (1111 km to the North). In the longitudinal analysis, predialysis systolic BP was lower in summer and higher in winter (difference, 1.7 mmHg; 95% CI, 1.3-2.2 mmHg), with greater differences in southern locations (P-interaction=0.04). Predialysis systolic BP was inversely associated with outdoor temperature (-0.8 mmHg/7.2 degrees C; 95% CI, -1.0 to -0.5 mmHg/7.2 degrees C), with steeper slopes in southern locations (P-interaction=0.005). Results were similar for predialysis diastolic BP. In conclusion, there is a geographical and seasonal gradient of BP in European hemodialysis patients. There is a need to consider these effects when evaluating and treating BP in this population and potentially in other
    corecore