113 research outputs found

    Large‐scale hydro‐climatology of the terrestrial Arctic drainage system

    Get PDF
    The large‐scale hydro‐climatology of the terrestrial Arctic drainage system is examined, focusing on the period 1960 onward. Special attention is paid to the Ob, Yenisey, Lena, and Mackenzie watersheds, which provide the bulk of freshwater discharge to the Arctic Ocean. Station data are used to compile monthly gridded time series of gauge‐corrected precipitation (P). Gridded time series of precipitation minus evapotranspiration (P−ET) are calculated from the moisture flux convergence using NCEP reanalysis data. Estimates of ET are obtained as a residual. Runoff (R) is obtained from available discharge records. For long‐term water‐year means, P−ET for the Yenisey, Lena, and Mackenzie watersheds is 16–20% lower than the observed runoff. In the Ob watershed, the two values agree within 9%. Given the uncertainties in P−ET, we consider the atmospheric and surface water budgets to be reasonably closed. Compared to the other three basins, the mean runoff ratio (R/P) is lower in the Ob watershed, consistent with the high fraction of annual precipitation lost through ET. All basins exhibit summer maxima in P and minima in P−ET. Summer P−ET in the Ob watershed is negative due to high ET rates. For large domains in northern Eurasia, about 25% of July precipitation is associated with the recycling of water vapor evapotranspirated within each domain. This points to a significant effect of the land surface on the hydrologic regime. Variability in P and P−ET has generally clear associations with the regional atmospheric circulation. A strong link with the Urals trough is documented for the Ob. Relationships with indices of the Arctic Oscillation and other teleconnections are generally weak. Water‐year time series of runoff and P−ET are strongly correlated in the Lena watershed only, reflecting extensive permafrost. Cold‐season runoff has increased in the Yenisey and Lena watersheds. This is most pronounced in the Yenisey watershed, where runoff has also increased sharply in spring, decreased in summer, but has increased for the year as a whole. The mechanisms for these changes are not entirely clear. While they fundamentally relate to higher air temperatures, increased winter precipitation, and strong summer drying, we speculate links with changes in active layer thickness and thawing permafrost

    The large‐scale freshwater cycle of the Arctic

    Get PDF
    This paper synthesizes our understanding of the Arctic\u27s large‐scale freshwater cycle. It combines terrestrial and oceanic observations with insights gained from the ERA‐40 reanalysis and land surface and ice‐ocean models. Annual mean freshwater input to the Arctic Ocean is dominated by river discharge (38%), inflow through Bering Strait (30%), and net precipitation (24%). Total freshwater export from the Arctic Ocean to the North Atlantic is dominated by transports through the Canadian Arctic Archipelago (35%) and via Fram Strait as liquid (26%) and sea ice (25%). All terms are computed relative to a reference salinity of 34.8. Compared to earlier estimates, our budget features larger import of freshwater through Bering Strait and larger liquid phase export through Fram Strait. While there is no reason to expect a steady state, error analysis indicates that the difference between annual mean oceanic inflows and outflows (∌8% of the total inflow) is indistinguishable from zero. Freshwater in the Arctic Ocean has a mean residence time of about a decade. This is understood in that annual freshwater input, while large (∌8500 km3), is an order of magnitude smaller than oceanic freshwater storage of ∌84,000 km3. Freshwater in the atmosphere, as water vapor, has a residence time of about a week. Seasonality in Arctic Ocean freshwater storage is nevertheless highly uncertain, reflecting both sparse hydrographic data and insufficient information on sea ice volume. Uncertainties mask seasonal storage changes forced by freshwater fluxes. Of flux terms with sufficient data for analysis, Fram Strait ice outflow shows the largest interannual variability

    Sensitivity of Northern Hemisphere Cyclone Detection and Tracking Results to Fine Spatial and Temporal Resolution Using ERA5

    Get PDF
    Lagrangian detection and tracking algorithms are frequently used to study the development, distribution, and trends of extratropical cyclones. Past research shows that results from these algorithms are sensitive to both spatial and temporal resolution of the gridded input fields, with coarser resolutions typically underestimating cyclone frequency by failing to capture weak, small, and short-lived systems. The fifth-generation atmospheric reanalysis from the European Centre for Medium-Range Weather Forecasts (ERA5) offers finer resolution, and therefore more precise information regarding storm locations and development than previous global reanalyses. However, our sensitivity tests show that using ERA5 sea-level pressure fields at their finest possible resolution does not necessarily lead to better cyclone detection and tracking. If a common number of nearest neighbors is used when detecting minima in sea-level pressure (like past studies), finer spatial resolution leads to noisier fields that unrealistically break up multi-center cyclones. Using a common search distance instead (with more neighbors at finer resolution) resolves the issue without smoothing inputs. Doing this also makes cyclone frequency, lifespan, and average depth insensitive to refining spatial resolution beyond 100 km. Results using 6-h and 3-h temporal resolutions have only minor differences, but using 1-h temporal resolution with a maximum allowed propagation speed of 150 km h-1 leads to unrealistic track splitting. This can be counteracted by increasing the maximum propagation speed, but modest sensitivity to temporal resolution persists for several cyclone characteristics. Therefore, we recommend caution if applying existing algorithms to temporal resolutions finer than 3-h and careful evaluation of algorithm settings

    A Regional, Integrated Monitoring System for the Hydrology of the Pan-Arctic Land Mass

    Get PDF
    Work under this NASA contract developed a system for monitoring and historical analysis of the major components of the pan-Arctic terrestrial water cycle. It is known as Arctic-RIMS (Regional Integrated Hydrological Monitoring System for the Pan-Arctic Landmass). The system uses products from EOS-era satellites, numerical weather prediction models, station records and other data sets in conjunction with an atmosphere-land surface water budgeting scheme. The intent was to compile operational (at 1-2 month time lags) gridded fields of precipitation (P), evapotranspiration (ET), P-ET, soil moisture, soil freeze/thaw state, active layer thickness, snow extent and its water equivalent, soil water storage, runoff and simulated discharge along with estimates of non-closure in the water budget. Using "baseline" water budgeting schemes in conjunction with atmospheric reanalyses and pre-EOS satellite data, water budget fields were conjunction with atmospheric reanalyses and pre-EOS satellite data, water budget fields were compiled to provide historical time series. The goals as outlined in the original proposal can be summarized as follows: 1) Use EOS data to compile hydrologic products for the pan-Arctic terrestrial regions including snowcover/snow water equivalent (SSM/A MODIS, AMSR) and near-surface freeze/thaw dynamics (Sea Winds on QuikSCAT and ADEOS I4 SSMI and AMSR). 2) Implement Arctic-RIMS to use EOS data streams, allied fields and hydrologic models to produce allied outputs that fully characterize pan-Arctic terrestrial and aerological water budgets. 3) Compile hydrologically-based historical products providing a long-term baseline of spatial and temporal variability in the water cycle

    Interleukin-27 Is Essential for Type 1 Diabetes Development and Sjögren Syndrome-like Inflammation.

    Get PDF
    Human genetic studies implicate interleukin-27 (IL-27) in the pathogenesis of type 1 diabetes (T1D), but the underlying mechanisms remain largely unexplored. To further define the role of IL-27 in T1D, we generated non-obese diabetic (NOD) mice deficient in IL-27 or IL-27Rα. In contrast to wild-type NOD mice, both NOD.Il27-/- and NOD.Il27ra-/- strains are completely resistant to T1D. IL-27 from myeloid cells and IL-27 signaling in T cells are critical for T1D development. IL-27 directly alters the balance of regulatory T cells (Tregs) and T helper 1 (Th1) cells in pancreatic islets, which in turn modulates the diabetogenic activity of CD8 T cells. IL-27 also directly enhances the effector function of CD8 T cells within pancreatic islets. In addition to T1D, IL-27 signaling in T cells is also required for lacrimal and salivary gland inflammation in NOD mice. Our study reveals that IL-27 contributes to autoimmunity in NOD mice through multiple mechanisms and provides substantial evidence to support its pathogenic role in human T1D

    Arctic system on trajectory to new state

    Get PDF
    The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this “super interglacial” state

    CD226 Deletion Reduces Type 1 Diabetes in the NOD Mouse by Impairing Thymocyte Development and Peripheral T Cell Activation.

    Get PDF
    The costimulatory molecule CD226 is highly expressed on effector/memory T cells and natural killer cells. Costimulatory signals received by T cells can impact both central and peripheral tolerance mechanisms. Genetic polymorphisms in CD226 have been associated with susceptibility to type 1 diabetes and other autoimmune diseases. We hypothesized that genetic deletion of Cd226 in the non-obese diabetic (NOD) mouse would impact type 1 diabetes incidence by altering T cell activation. CD226 knockout (KO) NOD mice displayed decreased disease incidence and insulitis in comparison to wild-type (WT) controls. Although female CD226 KO mice had similar levels of sialoadenitis as WT controls, male CD226 KO mice showed protection from dacryoadenitis. Moreover, CD226 KO T cells were less capable of adoptively transferring disease compared to WT NOD T cells. Of note, CD226 KO mice demonstrated increased CD8+ single positive (SP) thymocytes, leading to increased numbers of CD8+ T cells in the spleen. Decreased percentages of memory CD8+CD44+CD62L- T cells were observed in the pancreatic lymph nodes of CD226 KO mice. Intriguingly, CD8+ T cells in CD226 KO mice showed decreased islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-tetramer and CD5 staining, suggesting reduced T cell receptor affinity for this immunodominant antigen. These data support an important role for CD226 in type 1 diabetes development by modulating thymic T cell selection as well as impacting peripheral memory/effector CD8+ T cell activation and function
    • 

    corecore