13 research outputs found

    Enhance wine production potential by using fresh and dried red grape and blueberry mixtures with different yeast strains for fermentation

    Get PDF
    Red grapes and blueberries are known for their high content of bioactive compounds and antioxidant properties. In Mediterranean winemaking, traditional sun-drying can be replaced by controlled-airflow-chamber-drying, which provides better quality, higher phenolic content, and increased antioxidants. This study aimed to increase the sugar content and phenolic compounds of the must by drying the fruits to fifty per cent of their original moisture content. Two musts were prepared: the first one was prepared by combining fresh red grapes and dried blueberries (M1), while the other was created using dried red grapes and fresh blueberries (M2), followed by fermentation at 25 °C with M05 Mead and X5 yeast strains. The M2 must showed the highest levels of phenolic compounds, red color (A520), total anthocyanins, and antioxidant activity. During fermentation, the anthocyanin content increased mainly in the dried blueberry macerates, where it increased between 4- to 5.5-fold. More bioactive compounds were extracted from the wines produced using yeast inoculation despite the shorter maceration times. A sensory analysis demonstrated consumers’ acceptance of the wines in terms of color, flavor, and aroma. In conclusion, the use of red grapes in the production of blueberry red wine proved to be effective, providing higher sugar and must yields, while the dried fruits improved the fermentable sugar content obtaining wines with an alcoholic content between 10 and 11% (v/v). The higher levels of bioactive compounds increased the antioxidant capacity of the resulting red fruit wines

    Identi�cation �� �P���MS o� Ant�oc�anin Deri�ati�es in �aisins

    Get PDF
    e anthocyanin composition in red grapes dried under controlled conditions has been studied. Pyranoanthocyanins and condensed anthocyanins with �avanols by a methylmethine bridge have been identi�ed. �ypically, these compounds appear in wine aer the fermentation process, as they require compounds such as pyruvic acid, acetoacetic acid, and acetaldehyde for their formation. During the chamber-drying process a stress situation is originated, inducing signi�cant changes in the grape metabolism from aerobic to anaerobic, and as a result it produces the activation of the alcohol dehydrogenase enzyme (ADH) and others that would cause the formation of these compounds. ese derivatives are very interesting because they give greater stability to the color of red wine

    FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening.

    Get PDF
    In this work, we identified and functionally characterized the strawberry (Fragaria × ananassa) R2R3 MYB transcription factor FaMYB123. As in most genes associated with organoleptic properties of ripe fruit, FaMYB123 expression is ripening-related, receptacle-specific, and antagonistically regulated by ABA and auxin. Knockdown of FaMYB123 expression by RNAi in ripe strawberry fruit receptacles downregulated the expression of enzymes involved in the late steps of anthocyanin/flavonoid biosynthesis. Transgenic fruits showed a parallel decrease in the contents of total anthocyanin and flavonoid, especially malonyl derivatives of pelargonidin and cyanidins. The decrease was concomitant with accumulation of proanthocyanin, propelargonidins, and other condensed tannins associated mainly with green receptacles. Potential coregulation between FaMYB123 and FaMYB10, which may act on different sets of genes for the enzymes involved in anthocyanin production, was explored. FaMYB123 and FabHLH3 were found to interact and to be involved in the transcriptional activation of FaMT1, a gene responsible for the malonylation of anthocyanin components during ripening. Taken together, these results demonstrate that FaMYB123 regulates the late steps of the flavonoid pathway in a specific manner. In this study, a new function for an R2R3 MYB transcription factor, regulating the expression of a gene that encodes a malonyltransferase, has been elucidated.This work was funded by the Spanish Ministerio de Ciencia e Innovacion (AGL2014-55784-C2-2-R and AGL2017-86531-C2-2-R). FJMR is supported by a ‘Margarita Salas’ post-doctoral fellowship (UCOR02MS) from the University of Cordoba (Requalification of the Spanish university system) from the Ministry of Universities financed by the European Union (NexGenerationEU). FJMH is supported by a ‘Juan de la Cierva-Incorporacion’ fellowship (IJC2020- 045526-I), funded by MCIN/AEI/10.13039/501100011033 and the European Union ‘NextGenerationEU’/PRTR. AR-F and SA are on the European Union’s Horizon 2020 Research and Innovation Program, Project PlantaSYST (SGA-CSA No. 739582 under FPA No. 664620). The authors thank Dr. Gema Garc ıa from the Microscopy Unit of UCAIB-IMIBIC for technical help with the microscope. Funding for open access charge: University of Cordoba/CBUA.S

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Identification by HPLC-MS of Anthocyanin Derivatives in Raisins

    No full text
    The anthocyanin composition in red grapes dried under controlled conditions has been studied. Pyranoanthocyanins and condensed anthocyanins with flavanols by a methylmethine bridge have been identified. Typically, these compounds appear in wine after the fermentation process, as they require compounds such as pyruvic acid, acetoacetic acid, and acetaldehyde for their formation. During the chamber-drying process a stress situation is originated, inducing significant changes in the grape metabolism from aerobic to anaerobic, and as a result it produces the activation of the alcohol dehydrogenase enzyme (ADH) and others that would cause the formation of these compounds. These derivatives are very interesting because they give greater stability to the color of red wine

    Laforin and malin deletions in mice produce similar neurologic impairments

    No full text
    9 páginasLafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A gene encoding laforin or in the EPM2B gene encoding malin. It is characterized by the presence of polyglucosan intracellular inclusion bodies (Lafora bodies) in brain and other tissues. Targeted disruption of Epm2a or Epm2b genes in mice produced widespread neuronal degeneration and accumulation of Lafora bodies in neuronal and nonneuronal tissues. Here we analyzed the neurologic alterations produced by disruption of the laforin gene in Epm2a−/− mice and compared them to those in malin-deficient mice. Both Epm2a−/− and Epm2b−/− mice showed altered motor activity, impaired motor coordination, abnormal hind limb clasping, and episodic memory deficits. Epm2a−/− mice also had tonic-clonic seizures, whereas both Epm2a−/− and Epm2b−/− mice had spontaneous single spikes, spike-wave, polyspikes, and polyspike-wave complexes with correlated myoclonic jerks. Neurologic alterations observed in the mutants were comparable and correlated with the accumulation of abundant Lafora bodies in the cerebral cortex, the hippocampus, the basal ganglia, the cerebellum, and the brainstem, suggesting that these inclusions could cause cognitive and behavioral deterioration. Thus, both Epm2a−/− and Epm2b−/− mice exhibit many pathologic aspects seen in patients with Lafora disease and may be valuable for the study of this disorderPeer reviewe
    corecore