186 research outputs found
Sustainable vine shoots-to-ethanol valorisation by a sequential acid/organosolv pretreatment
In this study, a fractionation and valorisation scheme for vine shoots is proposed for biofuel and lignin production. This agricultural waste was fractionated by acid/organosolv sequential pretreatment. In the first step, acid pretreatment was optimised at 150ÂșC and 1.2% H2SO4 to release hemicellulosic sugars, of which 76% could be recovered. This sugar stream was co-fermented by E. coli with an ethanol yield higher than 98% after detoxification with resins or NH4OH. The solid obtained under optimal acid pretreatment conditions was delignified by organosolv treatment, and a delignification rate of 43% was reached at 180ÂșC. This substrate with 83% enzymatic digestibility was bio-converted into ethanol by simultaneous saccharification and fermentation, with a yield of 76%. Additionally, lignin was recovered from the organosolv liquor, aiming for the full valorisation of the biomass, which showed a syringyl/guaiacyl ratio of 0.92 by nuclear magnetic resonance, complying with the data provided for Fourier transform infrared spectroscopy and confirming the aromaticity of this fraction for further valorisation.MCIN/AEI/10.13039/501100011033 and by âERDF A way of making Europeâ Grant PID2020-112594RB-C31, PID2020-112594RB-C33. Junta de AndalucĂa, predoctoral contract PREDOC_01931
Hidden geometric correlations in real multiplex networks
Real networks often form interacting parts of larger and more complex
systems. Examples can be found in different domains, ranging from the Internet
to structural and functional brain networks. Here, we show that these multiplex
systems are not random combinations of single network layers. Instead, they are
organized in specific ways dictated by hidden geometric correlations between
the individual layers. We find that these correlations are strong in different
real multiplexes, and form a key framework for answering many important
questions. Specifically, we show that these geometric correlations facilitate:
(i) the definition and detection of multidimensional communities, which are
sets of nodes that are simultaneously similar in multiple layers; (ii) accurate
trans-layer link prediction, where connections in one layer can be predicted by
observing the hidden geometric space of another layer; and (iii) efficient
targeted navigation in the multilayer system using only local knowledge, which
outperforms navigation in the single layers only if the geometric correlations
are sufficiently strong. Our findings uncover fundamental organizing principles
behind real multiplexes and can have important applications in diverse domains.Comment: Supplementary Materials available at
http://www.nature.com/nphys/journal/v12/n11/extref/nphys3812-s1.pd
Programmed cell senescence during mammalian embryonic development
Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-beta/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence
Structural insights into ring-building motif domains involved in bacterial sporulation.
Components of specialized secretion systems, which span the inner and outer membranes in Gram-negative bacteria, include ring-forming proteins whose oligomerization was proposed to be promoted by domains called RBM for "Ring-Building Motifs". During spore formation in Gram-positive bacteria, a transport system called the SpoIIIA-SpoIIQ complex also assembles in the double membrane that surrounds the forespore following its endocytosis by the mother cell. The presence of RBM domains in some of the SpoIIIA proteins led to the hypothesis that they would assemble into rings connecting the two membranes and form a conduit between the mother cell and forespore. Among them, SpoIIIAG forms homo-oligomeric rings in vitro but the oligomerization of other RBM-containing SpoIIIA proteins, including SpoIIIAH, remains to be demonstrated. In this work, we identified RBM domains in the YhcN/YlaJ family of proteins that are not related to the SpoIIIA-SpoIIQ complex. We solved the crystal structure of YhcN from Bacillus subtilis, which confirmed the presence of a RBM fold, flanked by additional secondary structures. As the protein did not show any oligomerization ability in vitro, we investigated the structural determinants of ring formation in SpoIIIAG, SpoIIIAH and YhcN. We showed that in vitro, the conserved core of RBM domains alone is not sufficient for oligomerization while the ÎČ-barrel forming region in SpoIIIAG forms rings on its own. This work suggests that some RBMs might indeed participate in the assembly of homomeric rings but others might have evolved toward other functions
Integrated fecal microbiomeâmetabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome
To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS) several modalities of biological and clinical data must be combined. We aimed to identify profiles of faecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Faecal metabolites were measured using proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy and gut microbiome using Shotgun Metagenomic Sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HC) with extensive clinical, biological and phenotype information. Data were analysed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve (AUC) of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on faecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavourable stress-response related to gastrointestinal symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS
Evaluation of a Mixed Meal Test for Diagnosis and Characterization of PancrEaTogEniC DiabeTes Secondary to Pancreatic Cancer and Chronic Pancreatitis: Rationale and Methodology for the DETECT Study From the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer
Pancreatogenic diabetes mellitus is most commonly the result of chronic pancreatitis but can also occur secondary to pancreatic cancer. The early identification of pancreatogenic diabetes and distinction from the more prevalent type 2 diabetes are clinically significant; however, currently, there is no validated method to differentiate these diabetes subtypes. We describe a study, "Evaluation of a Mixed Meal Test for Diagnosis and Characterization of PancrEaTogEniC DiabeTes Secondary to Pancreatic Cancer and Chronic Pancreatitis: the DETECT study," that seeks to address this knowledge gap. The DETECT study is a multicenter study that will examine differences in hormone and glucose excursions after a mixed meal test. The study will also create a biorepository that will be used to evaluate novel diagnostic biomarkers for differentiating these diabetes subtypes
A Molecular Characterization of the Allelic Expression of the BRCA1 Founder Î9â12 Pathogenic Variant and Its Potential Clinical Relevance in Hereditary Cancer:International Journal of Molecular Sciences
Hereditary breast and ovarian cancer (HBOC) syndrome is a genetic condition that increases the risk of breast cancer by 80% and that of ovarian cancer by 40%. The most common pathogenic variants (PVs) causing HBOC occur in the BRCA1 gene, with more than 3850 reported mutations in the gene sequence. The prevalence of specific PVs in BRCA1 has increased across populations due to the effect of founder mutations. Therefore, when a founder mutation is identified, it becomes key to improving cancer risk characterization and effective screening protocols. The only founder mutation described in the Mexican population is the deletion of exons 9 to 12 of BRCA1 (BRCA1Î9â12), and its description focuses on the gene sequence, but no transcription profiles have been generated for individuals who carry this gene. In this study, we describe the transcription profiles of cancer patients and healthy individuals who were heterozygous for PV BRCA1Î9â12 by analyzing the differential expression of both alleles compared with the homozygous BRCA1 control group using RTâqPCR, and we describe the isoforms produced by the BRCA1 wild-type and BRCA1Î9â12 alleles using nanopore long-sequencing. Using the KruskalâWallis test, our results showed a similar transcript expression of the wild-type allele between the healthy heterozygous group and the homozygous BRCA1 control group. An association between the recurrence and increased expression of both alleles in HBOC patients was also observed. An analysis of the sequences indicated four wild-type isoforms with diagnostic potential for discerning individuals who carry the PV BRCA1Î9â12 and identifying which of them has developed cancer
Primary angiosarcoma of the ovary with prominent fibrosis of the ovarian stroma. Case report of an 81-year old patient
Primary angiosarcoma of the ovary (AS) is a rare entity with only 31 reported cases. The majority are pure angiosarcomas, the remainder are associated either with teratomas or conventional epithelial tumors. More than 50% of ovarian AS are disseminated at the time of diagnosis, the minority is detected in stage I. The prognosis of ovarian angiosarcoma in general is poor. Most reports refer to younger individuals, aged from 7 to 46 years, and only 2 case reports could be found for patients older than 64 years. Here we present a very unusual case of angiosarcoma in a 81-year-old patient
- âŠ