53 research outputs found
Towards wafer scale inductive determination of magnetostatic and dynamic parameters of magnetic thin films and multilayers
We investigate an inductive probe head suitable for non-invasive
characterization of the magnetostatic and dynamic parameters of magnetic thin
films and multilayers on the wafer scale. The probe is based on a planar
waveguide with rearward high frequency connectors that can be brought in close
contact to the wafer surface. Inductive characterization of the magnetic
material is carried out by vector network analyzer ferromagnetic resonance.
Analysis of the field dispersion of the resonance allows the determination of
key material parameters such as the saturation magnetization MS or the
effective damping parameter Meff. Three waveguide designs are tested. The
broadband frequency response is characterized and the suitability for inductive
determination of MS and Meff is compared. Integration of such probes in a wafer
prober could in the future allow wafer scale in-line testing of magnetostatic
and dynamic key material parameters of magnetic thin films and multilayers
Parameter dependence of resonant spin torque magnetization reversal
We numerically study ultra fast resonant spin torque (ST) magnetization
reversal in magnetic tunnelling junctions (MTJ) driven by current pulses having
a direct current (DC) and a resonant alternating current (AC) component. The
precessional ST dynamics of the single domain MTJ free layer cell are modelled
in the macro spin approximation. The energy efficiency, reversal time, and
reversal reliability are investigated under variation of pulse parameters like
direct and AC current amplitude, AC frequency and AC phase. We find a range of
AC and direct current amplitudes where robust resonant ST reversal is obtained
with faster switching time and reduced energy consumption per pulse compared to
purely direct current ST reversal. However for a certain range of AC and direct
current amplitudes a strong dependence of the reversal properties on AC
frequency and phase is found. Such regions of unreliable reversal must be
avoided for ST memory applications.Comment: 17 pages, 4 figure
Current-induced two-level fluctuations in pseudo spin-valves (Co/Cu/Co) nanostructures
Two-level fluctuations of the magnetization state of pseudo spin-valve
pillars Co(10 nm)/Cu(10 nm)/Co(30 nm) embedded in electrodeposited nanowires
(~40 nm in diameter, 6000 nm in length) are triggered by spin-polarized
currents of 10^7 A/cm^2 at room temperature. The statistical properties of the
residence times in the parallel and antiparallel magnetization states reveal
two effects with qualitatively different dependences on current intensity. The
current appears to have the effect of a field determined as the bias field
required to equalize these times. The bias field changes sign when the current
polarity is reversed. At this field, the effect of a current density of 10^7
A/cm^2 is to lower the mean time for switching down to the microsecond range.
This effect is independent of the sign of the current and is interpreted in
terms of an effective temperature for the magnetization.Comment: 4 pages, 5 figures, revised version, to be published in Phys. Rev.
Let
Spin-dependent transport in cluster-assemblednanostructures: influence of cluster size and matrix material
Abstract.: Spin-dependent transport in granular metallic nanostructures has been investigated by means of a thermoelectric measurement. Cobalt clusters of well-defined size (〈n〉 = 15-600) embedded in copper and silver matrices show magnetic field responses of up to several hundred percent at low temperature. The experimental observations are attributed to spin mixing. The influence of cluster size and matrix are discusse
Tunneling magneto thermo power in magnetic tunnel junction nanopillars
We study the tunneling magneto thermo power (TMTP) in CoFeB/MgO/CoFeB
magnetic tunnel junction nanopillars. Thermal gradients across the junctions
are generated by a micropatterned electric heater line. Thermo power voltages
up to a few tens of \muV between the top and bottom contact of the nanopillars
are measured which scale linearly with the applied heating power and hence with
the applied temperature gradient. The thermo power signal varies by up to 10
\muV upon reversal of the relative magnetic configuration of the two CoFeB
layers from parallel to antiparallel. This signal change corresponds to a large
spin-dependent Seebeck coefficient of the order of 100 \muV/K and a large TMTP
change of the tunnel junction of up to 90%.Comment: Revised version containing additional data and analyis. 13 pages, 3
figure
Determination of spin-dependent Seebeck coefficients of CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars
We investigate the spin-dependent Seebeck coefficient and the tunneling
magneto thermopower of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJ) in the
presence of thermal gradients across the MTJ. Thermal gradients are generated
by an electric heater on top of the nanopillars. The thermo power voltage
across the MTJ is found to scale linearly with the heating power and reveals
similar field dependence as the tunnel magnetoresistance. The amplitude of the
thermal gradient is derived from calibration measurements in combination with
finite element simulations of the heat flux. Based on this, large
spin-dependent Seebeck coefficients of the order of (240 \pm 110) \muV/K are
derived. From additional measurements on MTJs after dielectric breakdown, a
tunneling magneto thermopower up to 90% can be derived for 1.5 nm MgO based MTJ
nanopillars
Magnetotransport properties depending on the nanostructure of Fe3O4 nanowires
We have studied the magnetic behaviour of Fe3O4 nanowires (NWs) with two different diameter ranges, above 150 nm and below 60 nm, made by electrodeposition techniques into a polymeric template. The nanowires were characterized using various techniques, in particular M¨ossbauer and thermoelectrical power measurements. The stoichiometric distribution of Fe cations showed clearly the presence of the magnetite inverse spinel electronic structure. Structural analysis performed using high-resolution transmission electron microscopy revealed two kinds of nanowire morphologies depending on the size. For nanowires above 150 nm in diameter, a contiguous network of well-bound nanoparticles was obtained. Instead, with a diameter of 60 nm, a polycrystalline structure was observed. The largest nanowires presented a magnetoresistance (MR) greater than 10%, whereas the thinner nanowires had almost none
- …