11,170 research outputs found

    Fast model predictive control for hydrogen outflow regulation in ethanol steam reformers

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the recent years, the presence of alternative power sources, such as solar panels, wind farms, hydropumps and hydrogen-based devices, has significantly increased. The reasons of this trend are clear: contributing to a reduction of gas emissions and dependency on fossil fuels. Hydrogen-based devices are of particular interest due to their significant efficiency and reliability. Reforming technologies are among the most economic and efficient ways of producing hydrogen. In this paper we consider the regulation of hydrogen outflow in an ethanol steam reformer (ESR). In particular, a fast model predictive control approach based on a finite step response model of the process is proposed. Simulations performed using a more realistic non-linear model show the effectiveness of the proposed approach in driving the ESR to different operating conditions while fulfilling input and output constraints.Peer ReviewedPostprint (author's final draft

    The Fano-Rashba effect

    Full text link
    We analyze the linear conductance of a semiconductor quantum wire containing a region where a local Rashba spin-orbit interaction is present. We show that Fano lineshapes appear in the conductance due to the formation of quasi bound states which interfere with the direct transmission along the wire, a mechanism that we term the Fano-Rashba effect. We obtain the numerical solution of the full Schr\"odinger equation using the quantum-transmitting-boundary method. The theoretical analysis is performed using the coupled-channel model, finding an analytical solution by ansatz. The complete numerical solution of the coupled-channel equations is also discussed, showing the validity of the ansatz approach.Comment: 5 pages, proceedings of ICN+T 2006 (Basel, Switzerland, 30/7-4/9), accepted, to appear in J. Phys.: Conf. Se

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex

    Short-timescale Fluctuations in the Difference Light Curves of QSO 0957+561A,B: Microlensing or Noise?

    Get PDF
    From optical R band data of the double quasar QSO 0957+561A,B, we made two new difference light curves (about 330 days of overlap between the time-shifted light curve for the A image and the magnitude-shifted light curve for the B image). We observed noisy behaviours around the zero line and no short-timescale events (with a duration of months), where the term event refers to a prominent feature that may be due to microlensing or another source of variability. Only one event lasting two weeks and rising - 33 mmag was found. Measured constraints on the possible microlensing variability can be used to obtain information on the granularity of the dark matter in the main lensing galaxy and the size of the source. In addition, one can also test the ability of the observational noise to cause the rms averages and the local features of the difference signals. We focused on this last issue. The combined photometries were related to a process consisting of an intrinsic signal plus a Gaussian observational noise. The intrinsic signal has been assumed to be either a smooth function (polynomial) or a smooth function plus a stationary noise process or a correlated stationary process. Using these three pictures without microlensing, we derived some models totally consistent with the observations. We finally discussed the sensitivity of our telescope (at Teide Observatory) to several classes of microlensing variability.Comment: MNRAS, in press (LaTeX, 14 pages, 22 eps figures
    • …
    corecore