273 research outputs found

    A deep learning pipeline for product recognition on store shelves

    Full text link
    Recognition of grocery products in store shelves poses peculiar challenges. Firstly, the task mandates the recognition of an extremely high number of different items, in the order of several thousands for medium-small shops, with many of them featuring small inter and intra class variability. Then, available product databases usually include just one or a few studio-quality images per product (referred to herein as reference images), whilst at test time recognition is performed on pictures displaying a portion of a shelf containing several products and taken in the store by cheap cameras (referred to as query images). Moreover, as the items on sale in a store as well as their appearance change frequently over time, a practical recognition system should handle seamlessly new products/packages. Inspired by recent advances in object detection and image retrieval, we propose to leverage on state of the art object detectors based on deep learning to obtain an initial productagnostic item detection. Then, we pursue product recognition through a similarity search between global descriptors computed on reference and cropped query images. To maximize performance, we learn an ad-hoc global descriptor by a CNN trained on reference images based on an image embedding loss. Our system is computationally expensive at training time but can perform recognition rapidly and accurately at test time

    Coumarin-Chalcone Hybrids as new scaffolds in drug discovery

    Get PDF
    The 13th International Electronic Conference on Synthetic Organic Chemistry session General Organic SynthesisThe first hydroxilated series of coumarin-chalcone derivatives has been synthesize starting from the corresponding salicyl aldehyde and β-ketoester precursors by a Knoevenagel reaction in order to obtain the methoxy derivatives which have been further hydrolyzed with a Lewis aci

    Spin-crossover iron (II) complex showing thermal hysteresis around room temperature with symmetry breaking and an unusually high T(LIESST) of 120 K

    Get PDF
    We report a Fe(II) complex based on 4′,4′′ carboxylic acid disubstituted dipyrazolylpyridine that shows a spin-crossover close to room temperature associated to a crystallographic phase transition and the LIESST effect with a high T(LIESST) of 120 K

    Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling

    Full text link
    [EN] Cancellous bone yield strain has been reported in the literature to be relatively constant and independent from microstructure and apparent density, while fracture strain shows higher scattering. The objective of this work is to assess this hypothesis, characterizing the compression fracture in cancellous bone from a numerical approach and relating it to morphological parameters. Quasi-static compression fractures of cancellous bone samples are modeled using high-resolution image-based finite elements, correlating the numerical models and experimental results. The yield strain and the strain at fracture are inferred from the micro-CT-based finite element models by inverse analysis. The validation of the fracture models is carried out through digital image correlation (DIC). To develop this work, cancellous bone parallelepiped-shaped specimens were prepared and micro-CT scanned at 22 mu m spatial resolution. A morphometric analysis was carried out for each specimen in order to characterize its microstructure. Quasi-static compression tests were conducted, recording the force-displacement response and a sequence of images during testing for the application of the DIC technique. This was applied without the need of a speckle pattern benefiting from the irregular microstructure of cancellous bone. The finite element models are also used to simulate the local fracture of trabeculae at the micro level using a combination of continuum damage mechanics and the element deletion technique. Equivalent strain, computed both from DIC and micro-FE, was the best predictor of the compression fracture pattern. The procedure followed in this work permits the estimation of failure parameters that are difficult to measure experimentally, which can be used in numerical models.This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades grant numbers DPI2013-46641-R and DPI2017-89197-C2-2-R and the Generalitat Valenciana (Programme PROMETEO 2016/007). The micro-CT acquisitions were performed at CENIEH facilities with the collaboration of CENIEH staff. The authors also gratefully acknowledge the collaboration of Ms. Lucia Gomez.Belda, R.; Palomar-Toledano, M.; Peris Serra, JL.; Vercher Martínez, A.; Giner Maravilla, E. (2020). Compression failure characterization of cancellous bone combining experimental testing, digital image correlation and finite element modeling. International Journal of Mechanical Sciences. 165:1-12. https://doi.org/10.1016/j.ijmecsci.2019.105213S112165Gold, D. T. (2001). The Nonskeletal Consequences of Osteoporotic Fractures. Rheumatic Disease Clinics of North America, 27(1), 255-262. doi:10.1016/s0889-857x(05)70197-6Keaveny, T. M., Morgan, E. F., Niebur, G. L., & Yeh, O. C. (2001). Biomechanics of Trabecular Bone. Annual Review of Biomedical Engineering, 3(1), 307-333. doi:10.1146/annurev.bioeng.3.1.307Rho, J.-Y., Kuhn-Spearing, L., & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. doi:10.1016/s1350-4533(98)00007-1Currey, J. D. (2011). The structure and mechanics of bone. Journal of Materials Science, 47(1), 41-54. doi:10.1007/s10853-011-5914-9Gupta, H. S., & Zioupos, P. (2008). Fracture of bone tissue: The ‘hows’ and the ‘whys’. Medical Engineering & Physics, 30(10), 1209-1226. doi:10.1016/j.medengphy.2008.09.007Nagaraja, S., Couse, T. L., & Guldberg, R. E. (2005). Trabecular bone microdamage and microstructural stresses under uniaxial compression. Journal of Biomechanics, 38(4), 707-716. doi:10.1016/j.jbiomech.2004.05.013Garcia, D., Zysset, P. K., Charlebois, M., & Curnier, A. (2008). A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomechanics and Modeling in Mechanobiology, 8(2), 149-165. doi:10.1007/s10237-008-0125-2Ridha, H., & Thurner, P. J. (2013). Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. Journal of the Mechanical Behavior of Biomedical Materials, 27, 94-106. doi:10.1016/j.jmbbm.2013.07.005Hambli, R. (2012). A quasi-brittle continuum damage finite element model of the human proximal femur based on element deletion. Medical & Biological Engineering & Computing, 51(1-2), 219-231. doi:10.1007/s11517-012-0986-5Fan, R., Gong, H., Zhang, X., Liu, J., Jia, Z., & Zhu, D. (2016). Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation. Computational and Mathematical Methods in Medicine, 2016, 1-12. doi:10.1155/2016/3495152Vellwock, A. E., Vergani, L., & Libonati, F. (2018). A multiscale XFEM approach to investigate the fracture behavior of bio-inspired composite materials. Composites Part B: Engineering, 141, 258-264. doi:10.1016/j.compositesb.2017.12.062Hambli, R. (2010). Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation. International Journal for Numerical Methods in Biomedical Engineering, 27(4), 461-475. doi:10.1002/cnm.1413Hambli, R. (2011). Apparent damage accumulation in cancellous bone using neural networks. Journal of the Mechanical Behavior of Biomedical Materials, 4(6), 868-878. doi:10.1016/j.jmbbm.2011.03.002Lemaitre, J. (1985). A Continuous Damage Mechanics Model for Ductile Fracture. Journal of Engineering Materials and Technology, 107(1), 83-89. doi:10.1115/1.3225775Turner, C. H., & Burr, D. B. (1993). Basic biomechanical measurements of bone: A tutorial. Bone, 14(4), 595-608. doi:10.1016/8756-3282(93)90081-kBay, B. K. (1995). Texture correlation: A method for the measurement of detailed strain distributions within trabecular bone. Journal of Orthopaedic Research, 13(2), 258-267. doi:10.1002/jor.1100130214Peters, W. H., & Ranson, W. F. (1982). Digital Imaging Techniques In Experimental Stress Analysis. Optical Engineering, 21(3). doi:10.1117/12.7972925Sutton, M., Wolters, W., Peters, W., Ranson, W., & McNeill, S. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133-139. doi:10.1016/0262-8856(83)90064-1Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science and Technology, 20(6), 062001. doi:10.1088/0957-0233/20/6/062001Khoo, S.-W., Karuppanan, S., & Tan, C.-S. (2016). A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation. Metrology and Measurement Systems, 23(3), 461-480. doi:10.1515/mms-2016-0028Palanca, M., Tozzi, G., & Cristofolini, L. (2015). The use of digital image correlation in the biomechanical area: a review. International Biomechanics, 3(1), 1-21. doi:10.1080/23335432.2015.1117395Grassi, L., & Isaksson, H. (2015). Extracting accurate strain measurements in bone mechanics: A critical review of current methods. Journal of the Mechanical Behavior of Biomedical Materials, 50, 43-54. doi:10.1016/j.jmbbm.2015.06.006Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4Carretta, R., Stüssi, E., Müller, R., & Lorenzetti, S. (2013). Within subject heterogeneity in tissue-level post-yield mechanical and material properties in human trabecular bone. Journal of the Mechanical Behavior of Biomedical Materials, 24, 64-73. doi:10.1016/j.jmbbm.2013.04.014Linde, F., & Sørensen, H. C. F. (1993). The effect of different storage methods on the mechanical properties of trabecular bone. Journal of Biomechanics, 26(10), 1249-1252. doi:10.1016/0021-9290(93)90072-mLinde, F., & Hvid, I. (1987). Stiffness behaviour of trabecular bone specimens. Journal of Biomechanics, 20(1), 83-89. doi:10.1016/0021-9290(87)90270-3Keaveny, T. M., Borchers, R. E., Gibson, L. J., & Hayes, W. C. (1993). Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. Journal of Biomechanics, 26(4-5), 599-607. doi:10.1016/0021-9290(93)90021-6Keaveny, T. M., Guo, X. E., Wachtel, E. F., McMahon, T. A., & Hayes, W. C. (1994). Trabecular bone exhibits fully linear elastic behavior and yields at low strains. Journal of Biomechanics, 27(9), 1127-1136. doi:10.1016/0021-9290(94)90053-1Keaveny, T. M., Pinilla, T. P., Crawford, R. P., Kopperdahl, D. L., & Lou, A. (1997). Systematic and random errors in compression testing of trabecular bone. Journal of Orthopaedic Research, 15(1), 101-110. doi:10.1002/jor.1100150115Correlated Solutions. VIC-2d v6 reference manual. 2016. http://www.correlatedsolutions.com/supportcontent/Vic-2D-v6-Manual.pdf.Whitehouse, W. J. (1974). The quantitative morphology of anisotropic trabecular bone. Journal of Microscopy, 101(2), 153-168. doi:10.1111/j.1365-2818.1974.tb03878.xKabel, J., van Rietbergen, B., Dalstra, M., Odgaard, A., & Huiskes, R. (1999). The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. Journal of Biomechanics, 32(7), 673-680. doi:10.1016/s0021-9290(99)00045-7Nalla, R. K., Kinney, J. H., & Ritchie, R. O. (2003). Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2(3), 164-168. doi:10.1038/nmat832Taylor, D. (2003). A crack growth model for the simulation of fatigue in bone. International Journal of Fatigue, 25(5), 387-395. doi:10.1016/s0142-1123(02)00165-2Burr, D. B., & Stafford, T. (1990). Validity of the Bulk-Staining Technique to Separate Artifactual From In Vivo Bone Microdamage. Clinical Orthopaedics and Related Research, 260, 305-308. doi:10.1097/00003086-199011000-00047Keaveny, T. M., & Hayes, W. C. (1993). A 20-Year Perspective on the Mechanical Properties of Trabecular Bone. Journal of Biomechanical Engineering, 115(4B), 534-542. doi:10.1115/1.2895536Wolfram, U., Wilke, H.-J., & Zysset, P. K. (2011). Damage accumulation in vertebral trabecular bone depends on loading mode and direction. Journal of Biomechanics, 44(6), 1164-1169. doi:10.1016/j.jbiomech.2011.01.018Kopperdahl, D. L., & Keaveny, T. M. (1998). Yield strain behavior of trabecular bone. Journal of Biomechanics, 31(7), 601-608. doi:10.1016/s0021-9290(98)00057-8Hara, T., Tanck, E., Homminga, J., & Huiskes, R. (2002). The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone, 31(1), 107-109. doi:10.1016/s8756-3282(02)00782-2Parkinson, I. H., Badiei, A., & Fazzalari, N. L. (2008). Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australasian Physics & Engineering Sciences in Medicine, 31(2), 160-164. doi:10.1007/bf03178592Wachtel, E. F., & Keaveny, T. M. (1997). Dependence of trabecular damage on mechanical strain. Journal of Orthopaedic Research, 15(5), 781-787. doi:10.1002/jor.1100150522Nazarian, A., Meier, D., Müller, R., & Snyder, B. D. (2009). Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing. Journal of Orthopaedic Research, 27(12), 1667-1674. doi:10.1002/jor.20931Schwiedrzik, J., Taylor, A., Casari, D., Wolfram, U., Zysset, P., & Michler, J. (2017). Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomaterialia, 60, 302-314. doi:10.1016/j.actbio.2017.07.030Bevill, G., Eswaran, S. K., Gupta, A., Papadopoulos, P., & Keaveny, T. M. (2006). Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone, 39(6), 1218-1225. doi:10.1016/j.bone.2006.06.016Althouse, A. D. (2016). Adjust for Multiple Comparisons? It’s Not That Simple. The Annals of Thoracic Surgery, 101(5), 1644-1645. doi:10.1016/j.athoracsur.2015.11.02

    Synthesis of new possible monoamine oxidase inhibitors

    Get PDF
    The 14th International Electronic Conference on Synthetic Organic Chemistry session Natural Products ChemistryWe have generated different resveratrol-coumarin hybrids with the aim of evaluate their biological applications and their pharmacological properties, particularly the inhibitory activity of monoamine oxidase enzyme. According to that, a first series of 3-aryl-4-hydroxycoumarins has been synthesized starting from aryl boronic acids and phenyliodonium zwitterions precursors by a palladium-catalyzed coupling reactionWe are grateful to the Spanish Ministerio de Sanidad y Consumo (PS09/00501) and to Xunta da Galicia (CSA030203PR). Silvia Serra is grateful to Programma Master and Back PR_MAB‐ A2009‐613 Regione Sardegn

    Assisted-assembly of coordination materials into advanced nanoarchitectures by Dip Pen nanolithography

    Get PDF
    3 páginas, 4 figuras.Femptolitre droplets deposited on surfaces assisted by an AFM tip are used as reactor vessels to fabricate arrays of nanoarchitectures ranging from single-crystals of metal–organic frameworks to hollow capsules of magnetic polyoxometalates.The work has been supported by the European Union (Project MolSpinQIP and SPINMOL ERC Advanced Grant), the Spanish Ministerio de Ciencia e Innovación, MICINN; with FEDER co-financing (grants MAT 2009-13977-C03 and MAT2007-61584, Project CONSOLIDER-INGENIO on Molecular Nanoscience) and the Generalitat Valenciana (PROMETEO Program). E. B. and S. C.-S. thank the MICINN for a FPI and FPU predoctoral grant.Peer reviewe

    Polymer-Based Composites for Engineering Organic Memristive Devices

    Get PDF
    Memristive materials play a key role in the development of neuromorphic technology given that they can combine information processing with volatile or nonvolatile memory storage in a single computational component. Both functionalities are strictly required for the design and implementation of neuromorphic circuits. Many of these bioinspired materials emulate the characteristics of memory and learning processes that happen in the brain. The memristive properties of a two-terminal (2-T) organic device based on ionic migration mediated by an ion-transport polymer are reported here. The material possesses unique memristive properties: it is reversibly switchable, shows tens of conductive states, presents Hebbian learning demonstrated by spiking time dependent plasticity, and behaves with both short- and long-term memory in a single device. The origin and synergy of both learning phenomena are theoretically explained by means of the chemical interaction between ionic electrolytes and the ion-conductive mediator. Further discussion on the transport mechanism is included to explain the dynamic behavior of these ionic devices under a variable electric field. This polymer-based composite as an outstanding neuromorphic material is proposed for being tunable, cheap, flexible, easy to process, reproducible, and more biocompatible than their inorganic analogs

    Gestño de dunas costeiras e conflitos de usos nos estados do Ceará e Rio Grande do Norte- Nordeste do Brasil

    Get PDF
    O objetivo deste trabalho foi discutir os critérios de classificaçào e enquadramento dos tipos de uso e ocupaçào nas dunas costeiras nos estados do Ceará e Rio Grande do Norte. Os mais diversos tipos de dunas foram compartimentados com ênfase na sua gênese, dinámica e peculiaridades, revelando as fragilidades ambientais, a partir do cruzamento das principais formas de uso e ocupaçào, Os aspectos dinámicos e jurídicos na classificaçào de dunas costeiras também foram discutidos. As zonas de preservaçào e conservaçào, com suas respectivas fragilidades e magnitude de impacto, nortearam a indicaçàc dos usos tolerados e proibidos, com as devidas adaptaçòes a realidade socioeconêmica e tradiçòes culturais dessas áreas.The goal of this paper is the discussion about classification criteria and setting for use type and occupation for Cearà and Rio Grande do Norte coastal dunes. The great diversity of dunes was divided from genetical, dynamics and other specificities showing the environmental fragilities from their use and occupation forms. Dynamical and juridical aspects to classify coastal dunes are discussed. Preservation zones with their own fragilities and impact amount could indicate allowed and not allowed uses with adaptation to the socioeconomic, cultural and traditional contexts
    corecore