70 research outputs found

    A note on supersymmetric D-brane dynamics

    Get PDF
    We study the spin dependence of D-brane dynamics in the Green-Schwarz formalism of boundary states. In particular we show how to interpret insertion of supercharges on the boundary state as sources of non-universal spin effects in D-brane potentials. In this way we find for a generic (D)p-brane, potentials going like v4−n/r7−p+nv^{4-n}/r^{7-p+n} corresponding to interactions between the different components of the D-brane supermultiplet. From the eleven dimensional point of view, these potentials arise from the exchange of field strengths corresponding to the graviton and the three form, coupled non-minimally to the branes. We show how an annulus computation truncated to its massless contribution is enough to reproduce these next-to-leading effects, meaning in particular that the one-loop (M)atrix theory effective action should encode all the spin dependence of low-energy supergravity interactions.Comment: LaTex file, 12 pages, no figures, some corrections in last section and references added; version to appear in Physics Letters

    Anomalous couplings for D-branes and O-planes

    Get PDF
    We study anomalous Wess-Zumino couplings of D-branes and O-planes in a general background and derive them from a direct string computation by factorizing in the RR channel various one-loop amplitudes. In particular, we find that Op-planes present gravitational anomalous couplings involving the Hirzebruch polynomial L, similarly to the roof genus A encoding Dp-brane anomalous couplings. We determine, in each case, the precise dependence of these couplings on the curvature of the tangent and normal bundles.Comment: 24 pages, LaTex, 5 figure

    Heterotic compactifications and nearly-Kahler manifolds

    Full text link
    We propose that under certain conditions heterotic string compactifications on half-flat and nearly-Kahler manifolds are equivalent. Based on this correspondence we argue that the moduli space of the nearly-Kahler manifolds under discussion consists only of the Kahler deformations moduli space and there is no correspondent for the complex structure deformations.Comment: 5 pages, references added, typos correcte

    Higher Derivative F-terms in N=2 Strings

    Get PDF
    We study a special class of higher derivative F-terms of the form Fg,nW2g(Πf)nF_{g,n}W^{2g}(\Pi f)^{n} where W is the N=2 gravitational superfield and Π\Pi is the chiral projector applied to a non-holomorphic function ff of the heterotic dilaton vector superfield. We analyze these couplings in the heterotic theory on K3×T2K3\times T^2 , where it is found they satisfy an anomaly equation as the well studied Fg,0F_{g,0} terms. We recognize that, near a point of SU(2) enhancement, a given generating function of the leading singularity of the Fg,nF_{g,n} reproduces the free energy of a c=1 string at an arbitrary radius R. According to the N=2 heterotic-type II duality in 4d, we then study these couplings near a conifold singularity, using its local description in terms of intersecting D-5-branes. In this context, it turns out that there exists, among the other states involved, a vector gauge field reproducing the heterotic leading singularity structure.Comment: 19 pages, latex file, no figure

    Effective description of brane terms in extra dimensions

    Get PDF
    We study how theories defined in (extra-dimensional) spaces with localized defects can be described perturbatively by effective field theories in which the width of the defects vanishes. These effective theories must incorporate a ``classical'' renormalization, and we propose a renormalization prescription a la dimensional regularization for codimension 1, which can be easily used in phenomenological applications. As a check of the validity of this setting, we compare some general predictions of the renormalized effective theory with those obtained in a particular ultraviolet completion based on deconstruction.Comment: 28 page

    Anomalies in orbifold field theories

    Get PDF
    We study the constraints on models with extra dimensions arising from local anomaly cancellation. We consider a five-dimensional field theory with a U(1) gauge field and a charged fermion, compactified on the orbifold S^1/(Z_2 x Z_2'). We show that, even if the orbifold projections remove both fermionic zero modes, there are gauge anomalies localized at the fixed points. Anomalies naively cancel after integration over the fifth dimension, but gauge invariance is broken, spoiling the consistency of the theory. We discuss the implications for realistic supersymmetric models with a single Higgs hypermultiplet in the bulk, and possible cancellation mechanisms in non-minimal models.Comment: 10 pages, 2 figures, LaTex; v2: final version to be published in Phys. Lett.

    Unitarity in Dirichlet Higgs Model

    Full text link
    We show that a five dimensional Universal Extra Dimension model, compactified on a line segment, is consistently formulated even when the gauge symmetry is broken solely by non-zero Dirichlet boundary conditions on a bulk Higgs field, without any quartic interaction. We find that the longitudinal W+W- elastic scattering amplitude, under the absence of the Higgs zero-mode, is unitarized by exchange of infinite towers of KK Higgs bosons. Resultant amplitude scales linearly with the scattering energy, exhibiting five dimensional nature. A tree-level partial-wave unitarity condition is satisfied up to 6.7 (5.7) TeV for the KK scale 430 (500) GeV, favored by the electroweak data within 90% CL.Comment: 14pages, 2 figures (v1); References added (v2); Trivial error corrected: u -> t and \cos\theta -> -\cos\theta, references added (v3); comments added, a reference added, version to appear in Eur. Phys. J. C (v4); Expressions matched to EPJC style, obsolete affiliation (on leave) has been removed (v5

    BPS states and supersymmetric index in N=2 type I string vacua

    Get PDF
    We study the moduli dependence of a class of couplings in K3×T2K3\times T^2 compactifications of type I string theory, for which one-loop amplitudes can be written in terms of an N=2 supersymmetric index. This index is determined for generic models as a function of the BPS spectrum. As an application we compute the one-loop moduli dependence of the FgW2gF_g W^{2g} couplings, where W is the N=2 gravitational superfield, for type I compactifications based on the Gimon-Johnson K3 orientifolds, showing explicitly their dependence on the aforementioned index.Comment: LaTex file, 26 pages, no figures, references added and typographical errors correcte

    The Matrix Theory S-Matrix

    Get PDF
    The technology required for eikonal scattering amplitude calculations in Matrix theory is developed. Using the entire supersymmetric completion of the v^4/r^7 Matrix theory potential we compute the graviton-graviton scattering amplitude and find agreement with eleven dimensional supergravity at tree level.Comment: 10 pages, RevTeX, no figure

    Heterotic String Compactifications on Half-flat Manifolds II

    Full text link
    In this paper, we continue the analysis of heterotic string compactifications on half-flat mirror manifolds by including the 10-dimensional gauge fields. It is argued, that the heterotic Bianchi identity is solved by a variant of the standard embedding. Then, the resulting gauge group in four dimensions is still E6 despite the fact that the Levi-Civita connection has SO(6) holonomy. We derive the associated four-dimensional effective theories including matter field terms for such compactifications. The results are also extended to more general manifolds with SU(3) structure.Comment: 31 page
    • 

    corecore