71 research outputs found
Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations
We analyze a new large-scale (Mpc) numerical hydrodynamic
simulation of the popular CDM cosmological model, including in our
treatment dark matter, gas and star-formation, on the basis of standard
physical processes. The method, applied with a numerical resolution of
kpc (which is still quite coarse for following individual galaxies,
especially in dense regions), attempts to estimate where and when galaxies
form. We then compare the smoothed galaxy distribution with the smoothed mass
distribution to determine the "bias" defined as on scales large compared with the code
numerical resolution (on the basis of resolution tests given in the appendix of
this paper). We find that (holding all variables constant except the quoted
one) bias increases with decreasing scale, with increasing galactic age or
metallicity and with increasing redshift of observations. At the Mpc
fiducial comoving scale bias (for bright regions) is 1.35 at reaching to
3.6 at , both numbers being consistent with extant observations. We also
find that Mpc voids in the distribution of luminous objects are
as observed (i.e., observed voids are not an argument against CDM-like models)
and finally that the younger systems should show a colder Hubble flow than do
the early type galaxies (a testable proposition). Surprisingly, little
evolution is found in the amplitude of the smoothed galaxy-galaxy correlation
function (as a function of {\it comoving} separation). Testing this prediction
vs observations will allow a comparison between this work and that of Kauffmann
et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig
Foreword to APPG Policy Report: The Missing Link: HIV and mental health
Cite as: APPG on HIV and Aids (2020) APPG Policy Report: The Missing Link: HIV and mental health
Effective refractive error coverage in adults aged 50 years and older: estimates from population-based surveys in 61 countries
Background: In 2021, WHO Member States endorsed a global target of a 40-percentage-point increase in effective refractive error coverage (eREC; with a 6/12 visual acuity threshold) by 2030. This study models global and regional estimates of eREC as a baseline for the WHO initiative. Methods: The Vision Loss Expert Group analysed data from 565 448 participants of 169 population-based eye surveys conducted since 2000 to calculate eREC (met need/[met need + undermet need + unmet need]). A binary logistic regression model was used to estimate eREC by Global Burden of Disease (GBD) Study super region among adults aged 50 years and older. Findings: In 2021, distance eREC was 79·1% (95% CI 72·4–85·0) in the high-income super region; 62·1% (54·7–68·8) in north Africa and Middle East; 49·5% (45·0–54·0) in central Europe, eastern Europe, and central Asia; 40·0% (31·7–48·2) in southeast Asia, east Asia, and Oceania; 34·5% (29·4–40·0) in Latin America and the Caribbean; 9·0% (6·5–12·0) in south Asia; and 5·7% (3·1–9·0) in sub-Saharan Africa. eREC was higher in men and reduced with increasing age. Global distance eREC increased from 2000 to 2021 by 19·0%. Global near vision eREC for 2021 was 20·5% (95% CI 17·8–24·4). Interpretation: Over the past 20 years, distance eREC has increased in each super region yet the WHO target will require substantial improvements in quantity and quality of refractive services in particular for near vision impairment. Funding: WHO, Sightsavers, The Fred Hollows Foundation, Fondation Thea, Brien Holden Vision Institute, Lions Clubs International Foundation
Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020 : the right to sight : an analysis for the Global Burden of Disease Study
Background: Many causes of vision impairment can be prevented or treated. With an ageing global population, the demands for eye health services are increasing. We estimated the prevalence and relative contribution of avoidable causes of blindness and vision impairment globally from 1990 to 2020. We aimed to compare the results with the World Health Assembly Global Action Plan (WHA GAP) target of a 25% global reduction from 2010 to 2019 in avoidable vision impairment, defined as cataract and undercorrected refractive error.Methods: We did a systematic review and meta-analysis of population-based surveys of eye disease from January, 1980, to October, 2018. We fitted hierarchical models to estimate prevalence (with 95% uncertainty intervals [UIs]) of moderate and severe vision impairment (MSVI; presenting visual acuity from <6/18 to 3/60) and blindness (<3/60 or less than 10° visual field around central fixation) by cause, age, region, and year. Because of data sparsity at younger ages, our analysis focused on adults aged 50 years and older.Findings: Global crude prevalence of avoidable vision impairment and blindness in adults aged 50 years and older did not change between 2010 and 2019 (percentage change −0·2% [95% UI −1·5 to 1·0]; 2019 prevalence 9·58 cases per 1000 people [95% IU 8·51 to 10·8], 2010 prevalence 96·0 cases per 1000 people [86·0 to 107·0]). Age-standardised prevalence of avoidable blindness decreased by −15·4% [–16·8 to −14·3], while avoidable MSVI showed no change (0·5% [–0·8 to 1·6]). However, the number of cases increased for both avoidable blindness (10·8% [8·9 to 12·4]) and MSVI (31·5% [30·0 to 33·1]). The leading global causes of blindness in those aged 50 years and older in 2020 were cataract (15·2 million cases [9% IU 12·7–18·0]), followed by glaucoma (3·6 million cases [2·8–4·4]), undercorrected refractive error (2·3 million cases [1·8–2·8]), age-related macular degeneration (1·8 million cases [1·3–2·4]), and diabetic retinopathy (0·86 million cases [0·59–1·23]). Leading causes of MSVI were undercorrected refractive error (86·1 million cases [74·2–101·0]) and cataract (78·8 million cases [67·2–91·4]).Interpretation: Results suggest eye care services contributed to the observed reduction of age-standardised rates of avoidable blindness but not of MSVI, and that the target in an ageing global population was not reached
Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study
Background
To contribute to the WHO initiative, VISION 2020: The Right to Sight, an assessment of global vision impairment in 2020 and temporal change is needed. We aimed to extensively update estimates of global vision loss burden, presenting estimates for 2020, temporal change over three decades between 1990–2020, and forecasts for 2050.
Methods
We did a systematic review and meta-analysis of population-based surveys of eye disease from January, 1980, to October, 2018. Only studies with samples representative of the population and with clearly defined visual acuity testing protocols were included. We fitted hierarchical models to estimate 2020 prevalence (with 95% uncertainty intervals [UIs]) of mild vision impairment (presenting visual acuity ≥6/18 and <6/12), moderate and severe vision impairment (<6/18 to 3/60), and blindness (<3/60 or less than 10° visual field around central fixation); and vision impairment from uncorrected presbyopia (presenting near vision <N6 or <N8 at 40 cm where best-corrected distance visual acuity is ≥6/12). We forecast estimates of vision loss up to 2050.
Findings
In 2020, an estimated 43·3 million (95% UI 37·6–48·4) people were blind, of whom 23·9 million (55%; 20·8–26·8) were estimated to be female. We estimated 295 million (267–325) people to have moderate and severe vision impairment, of whom 163 million (55%; 147–179) were female; 258 million (233–285) to have mild vision impairment, of whom 142 million (55%; 128–157) were female; and 510 million (371–667) to have visual impairment from uncorrected presbyopia, of whom 280 million (55%; 205–365) were female. Globally, between 1990 and 2020, among adults aged 50 years or older, age-standardised prevalence of blindness decreased by 28·5% (–29·4 to −27·7) and prevalence of mild vision impairment decreased slightly (–0·3%, −0·8 to −0·2), whereas prevalence of moderate and severe vision impairment increased slightly (2·5%, 1·9 to 3·2; insufficient data were available to calculate this statistic for vision impairment from uncorrected presbyopia). In this period, the number of people who were blind increased by 50·6% (47·8 to 53·4) and the number with moderate and severe vision impairment increased by 91·7% (87·6 to 95·8). By 2050, we predict 61·0 million (52·9 to 69·3) people will be blind, 474 million (428 to 518) will have moderate and severe vision impairment, 360 million (322 to 400) will have mild vision impairment, and 866 million (629 to 1150) will have uncorrected presbyopia.
Interpretation
Age-adjusted prevalence of blindness has reduced over the past three decades, yet due to population growth, progress is not keeping pace with needs. We face enormous challenges in avoiding vision impairment as the global population grows and ages
Prevalence and causes of vision loss in Latin America and the Caribbean in 2015: magnitude, temporal trends and projections
Objective To estimate the prevalence and causes of blindness and vision impairment for distance and near in Latin America and the Caribbean (LAC) in 2015 and to forecast trends to 2020.
Methods A meta-analysis from a global systematic review of 283 cross-sectional, population-representative studies from published and unpublished sources from 1980 to 2014 in the Global Vision Database included 17 published and 6 unpublished studies from LAC.
Results In 2015, across LAC, age-standardised prevalence was 0.38% in all ages and 1.56% in those over age 50 for blindness; 2.06% in all ages and 7.86% in those over age 50 for moderate and severe vision impairment (MSVI); 1.89% in all ages and 6.93% in those over age 50 for mild vision impairment and 39.59% in all ages and 45.27% in those over 50 for near vision impairment (NVI). In 2015, 117.86 million persons were vision impaired; of those 2.34 million blind, 12.46 million with MSVI, 11.34 million mildly impaired and 91.72 million had NVI. Cataract is the most common cause of blindness. Undercorrected refractive-error is the most common cause of vision impairment.
Conclusions These prevalence estimates indicate that one in five persons across LAC had some degree of vision loss in 2015. We predict that from 2015 to 2020, the absolute numbers of persons with vision loss will increase by 12% to 132.33 million, while the all-age age-standardised prevalence will decrease for blindness by 15% and for other distance vision impairment by 8%. All countries need epidemiologic research to establish accurate national estimates and trends. Universal eye health services must be included in universal health coverage reforms to address disparities, fragmentation and segmentation of healthcar
Phase 3, Randomized, 20-Month Study of the Efficacy and Safety of Bimatoprost Implant in Patients with Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 2)
Objective-
To evaluate the intraocular pressure (IOP)-lowering efficacy and safety of 10 and 15 µg bimatoprost implant in patients with open-angle glaucoma (OAG) or ocular hypertension (OHT).
Methods-
This randomized, 20-month, multicenter, masked, parallel-group, phase 3 trial enrolled 528 patients with OAG or OHT and an open iridocorneal angle inferiorly in the study eye. Study eyes were administered 10 or 15 µg bimatoprost implant on day 1, week 16, and week 32, or twice-daily topical timolol maleate 0.5%. Primary endpoints were IOP and IOP change from baseline through week 12. Safety measures included treatment-emergent adverse events (TEAEs) and corneal endothelial cell density (CECD).
Results-
Both 10 and 15 µg bimatoprost implant met the primary endpoint of noninferiority to timolol in IOP lowering through 12 weeks. Mean IOP reductions from baseline ranged from 6.2–7.4, 6.5–7.8, and 6.1–6.7 mmHg through week 12 in the 10 µg implant, 15 µg implant, and timolol groups, respectively. IOP lowering was similar after the second and third implant administrations. Probabilities of requiring no IOP-lowering treatment for 1 year after the third administration were 77.5% (10 µg implant) and 79.0% (15 µg implant). The most common TEAE was conjunctival hyperemia, typically temporally associated with the administration procedure. Corneal TEAEs of interest (primarily corneal endothelial cell loss, corneal edema, and corneal touch) were more frequent with the 15 than the 10 µg implant and generally were reported after repeated administrations. Loss in mean CECD from baseline to month 20 was ~ 5% in 10 µg implant-treated eyes and ~ 1% in topical timolol-treated eyes. Visual field progression (change in the mean deviation from baseline) was reduced in the 10 µg implant group compared with the timolol group.
Conclusions-
The results corroborated the previous phase 3 study of the bimatoprost implant. The bimatoprost implant met the primary endpoint and effectively lowered IOP. The majority of patients required no additional treatment for 12 months after the third administration. The benefit-risk assessment favored the 10 over the 15 µg implant. Studies evaluating other administration regimens with reduced risk of corneal events are ongoing. The bimatoprost implant has the potential to improve adherence and reduce treatment burden in glaucoma
- …