178 research outputs found

    Factors Influencing Consumers’ Attitude Towards Biopreservatives

    Get PDF
    Biopreservatives have received considerable attention in recent years as natural alternatives to synthetic preservatives. This seems to be a response to an increased demand for natural and organic foods. This study investigates the potential market for products enriched with biopreservatives in Italy. Data were collected from a sample of Italian consumers (N = 479) using a web‐based survey. The main results indicate that 64% of respondents declared themselves to be willing to consume biopreservatives only if they replaced synthetic preservatives. Principal component analysis (PCA) was applied to reduce the number of variables. The factorial scores of the components obtained from PCA were used for a Cluster Analysis related to consumers’ perceptions about biopreservatives. Moreover, the survey highlights that the respondents had positive opinions about biopreservatives, although they showed difficulty in perceiving the exact meaning of the term. The study could provide useful implications for food manufacturers and facilitate the design of marketing strategies for foods enriched with biopreservative

    Volatile compounds produced in wine by Colombian wildSaccharomyces cerevisiae strains

    Get PDF
    Some tropicalSaccharomyces cerevisiae strains, isolated fromChampus, a traditional Colombian low alcoholic fermented beverage, were characterised in order to select yeasts for aroma improvement in wine. H2S production, volatile acidity, β-glucosidase activity, higher alcoholesters and terpenes production were evaluated in this study. These tropical strains were characterised by a considerable production of ethyl hexanoate, 2-phenylethanol, 2-phenylethyl acetate, and geraniol, detected by SPME-GC-MS. Odor activity values were calculated to analyse the effects of yeasts strains on wine aroma, resulting in six distinctive wine groups, as evidenced by discriminant analysis. These results suggest thatSaccharomyces strains isolated fromChampus can be an important source for new tropical yeast biotypes with potential winemaking applications, producing a wide range of aroma compounds

    Identification and characterization of privet leaf blotch-associated virus, a novel idaeovirus

    Get PDF
    A novel virus has been identified by next-generation sequencing (NGS) in privet (Ligustrum japonicum L.) affected by a graft-transmissible disease characterized by leaf blotch symptoms resembling infectious variegation, a virus-like privet disease with an unclear aetiology. This virus, which has been tentatively named ‘privet leaf blotch-associated virus’ (PrLBaV), was absent in non-symptomatic privet plants, as revealed by NGS and reverse transcription-polymerase chain reaction (RT-PCR). Molecular characterization of PrLBaV showed that it has a segmented genome composed of two positive single-stranded RNAs, one of which (RNA1) is monocistronic and codes for the viral replicase, whereas the other (RNA2) contains two open reading frames (ORFs), ORF2a and ORF2b, coding for the putative movement (p38) and coat (p30) proteins, respectively. ORF2b is very probably expressed through a subgenomic RNA starting with six nucleotides (AUAUCU) that closely resemble those found in the 5′-terminal end of genomic RNA1 and RNA2 (AUAUUU and AUAUAU, respectively). The molecular signatures identified in the PrLBaV RNAs and proteins resemble those of Raspberry bushy dwarf virus (RBDV), currently the only member of the genus Idaeovirus. These data, together with phylogenetic analyses, are consistent with the proposal of considering PrLBaV as a representative of the second species in the genus Idaeovirus. Transient expression of a recombinant PrLBaV p38 fused to green fluorescent protein in leaves of Nicotiana benthamiana, coupled with confocal laser scanning microscopy assays, showed that it localizes at cell plasmodesmata, strongly supporting its involvement in viral movement/trafficking and providing the first functional characterization of an idaeovirus encoded protein

    Unraveling the Antimicrobial Effectiveness of Coridothymus capitatus Hydrolate against Listeria monocytogenes in Environmental Conditions Encountered in Foods: An In Vitro Study

    Get PDF
    The increased resistance of bacteria to antimicrobials, as well as the growing interest in innovative and sustainable alternatives to traditional food additives, are driving research towards the use of natural food preservatives. Among these, hydrolates (HYs) have gained attention as "mild" alternatives to conventional antimicrobial compounds. In this study, the response of L. monocytogenes ATCC 7644 exposed to increasing concentrations of Coridothymus capitatus HY (CHY) for 1 h at 37 °C was evaluated by means of Phenotype Microarray, modelling the kinetic data obtained by inoculating control and treated cells into GEN III microplates, after CHY removal. The results revealed differences concerning the growth dynamics in environmental conditions commonly encountered in food processing environments (different carbon sources, pH 6.0, pH 5.0, 1-8% NaCl). More specifically, for treated cells, the lag phase was extended, the growth rate was slowed down and, in most cases, the maximum concentration was diminished, suggesting the persistence of stress even after CHY removal. Confocal Laser Scanner Microscopy evidenced a diffuse aggregation and suffering of the treated cells, as a response to the stress encountered. In conclusion, the treatment with HY caused a stressing effect that persisted after its removal. The results suggest the potential of CHY application to control L. monocytogenes in food environments

    Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms?

    Get PDF
    Most human infectious diseases are caused by microorganisms growing as biofilms. These three-dimensional self-organized communities are embedded in a dense matrix allowing microorganisms to persistently inhabit abiotic and biotic surfaces due to increased resistance to both antibiotics and effectors of the immune system. Consequently, there is an urgent need for novel strategies to control biofilm-associated infections. Natural products offer a vast array of chemical structures and possess a wide variety of biological properties; therefore, they have been and continue to be exploited in the search for potential biofilm inhibitors with a specific or multi-locus mechanism of action. This review provides an updated discussion of the major bioactive compounds isolated from several natural sources - such as plants, lichens, algae, microorganisms, animals, and humans - with the potential to inhibit biofilm formation and/or to disperse established biofilms by bacterial pathogens. Despite the very large number of bioactive products, their exact mechanism of action often remains to be clarified and, in some cases, the identity of the active molecule is still unknown. This knowledge gap should be filled thus allowing development of these products not only as novel drugs to combat bacterial biofilms, but also as antibiotic adjuvants to restore the therapeutic efficacy of current antibiotics

    salmonella enterica control in stick carrots through incorporation of coriander seeds essential oil in sustainable washing treatments

    Get PDF
    Chemical disinfectants represent one of the commonly used practice in minimal processed vegetables food-chain. However, the scarce safety and sustainability of these agents force food industry to move toward more sustainable "green washing solutions". Among the latter, while the application of plant derivates for the control of several pathogens is already well-known, specific information on the potential anti-Salmonella activity of Coriandrum sativum seeds derivates are still limited and were therefore investigated in this study. In detail, Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) of different coriander seed derivates (i.e. essential oil, hydrosol and ethanolic extract) were determined by broth dilution against six Salmonella enterica strains isolated from fresh and minimally processed fruits and vegetables. Only the essential oil (EO) was effective in vitro with strain-dependent results. In addition, when mixed in co-culture, the strains were more sensitive to the essential oil treatment. Chemical investigations allowed to define (s)-(+)-linalool as major compound, and to underline interesting phenolic content with correlated antioxidant capacity. A cocktail of three strains of different serovars was selected and employed for a preliminary in situ trial on stick carrots. The obtained results allowed to establish that the application of coriander seed EO at concentrations of 5 µL mL-1 was able to reduce and contain the growth of the Salmonella cocktail up to 24 hours at 10°C. Good sensory evaluation results were obtained by applying this EO concentration as washing treatment, especially in terms of color parameter. Further studies should be undertaken to emphasize the upstream activity, improving the formulation or exploiting a combined effect with other sanitizers or treatments (e.g. physical treatments). The present study contributes to the knowledge on coriander derivates activity against Salmonella spp. and on the potential application as sustainable washing treatment in removing this pathogen from fresh cut carrots

    Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

    Get PDF
    The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited
    corecore