589 research outputs found

    Healthcare workers training courses on vaccinations: A flexible format easily adaptable to different healthcare settings.

    Get PDF
    Since 2017, Italy has expanded the compulsory vaccination from 4 to 10 for those aged 0 to 16 years. Because of the great organizational effort required for the immunization services, minor attention was given to the vaccinations not included among the mandatory ones. This situation led to a real difficulty in harmonizing the vaccination procedures even inside a single region. In the Lazio region, the Laboratory of Vaccinology of the University of Rome Tor Vergata established a working group to create a new training model for healthcare professionals. The course program proposed an update of three vaccinations which are not mandatory but actively offered. It included the same part of scientific updating and a variable part based on local experiences. A specific anonymous questionnaire on knowledge and attitude was administered. The study aimed to propose a general format of training courses for vaccination centers adaptable to the individual local health units (ASLs) and to evaluate through questionnaires. The results show differences in knowledge and attitudes toward non‐mandatory vaccinations among the ASLs of Lazio, confirming the usefulness of a support to make knowledge and procedures homogeneous. This model could be adapted to any healthcare setting and exported to other services

    COVID-19 and individual genetic susceptibility/receptivity: Role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double x-chromosome in females be protective against SARS-COV-2 compared to the single x-chromosome in males?

    Get PDF
    In December 2019, a novel severe acute respiratory syndrome (SARS) from a new coronavirus (SARS-CoV-2) was recognized in the city of Wuhan, China. Rapidly, it became an epidemic in China and has now spread throughout the world reaching pandemic proportions. High mortality rates characterize SARS-CoV-2 disease (COVID-19), which mainly affects the elderly, causing unrestrained cytokines-storm and subsequent pulmonary shutdown, also suspected micro thromboembolism events. At the present time, no specific and dedicated treatments, nor approved vaccines, are available, though very promising data come from the use of anti-inflammatory, anti-malaria, and anti-coagulant drugs. In addition, it seems that males are more susceptible to SARS-CoV-2 than females, with males 65% more likely to die from the infection than females. Data from the World Health Organization (WHO) and Chinese scientists show that of all cases about 1.7% of women who contract the virus will die compared with 2.8% of men, and data from Hong Kong hospitals state that 32% of male and 15% of female COVID-19 patients required intensive care or died. On the other hand, the long-term fallout of coronavirus may be worse for women than for men due to social and psychosocial reasons. Regardless of sex-or gender-biased data obtained from WHO and those gathered from sometimes controversial scientific journals, some central points should be considered. Firstly, SARS-CoV-2 has a strong interaction with the human ACE2 receptor, which plays an essential role in cell entry together with transmembrane serine protease 2 (TMPRSS2); it is interesting to note that the ACE2 gene lays on the X-chromosome, thus allowing females to be potentially heterozygous and differently assorted compared to men who are definitely hemizygous. Secondly, the higher ACE2 expression rate in females, though controversial, might ascribe them the worst prognosis, in contrast with worldwide epidemiological data. Finally, several genes involved in inflammation are located on the X-chromosome, which also contains high number of immune-related genes responsible for innate and adaptive immune responses to infection. Other genes, out from the RAS-pathway, might directly or indirectly impact on the ACE1/ACE2 balance by influencing its main actors (e.g., ABO locus, SRY, SOX3, ADAM17). Unexpectedly, the higher levels of ACE2 or ACE1/ACE2 rebalancing might improve the outcome of COVID-19 in both sexes by reducing inflammation, thrombosis, and death. Moreover, X-heterozygous females might also activate a mosaic advantage and show more pronounced sex-related differences resulting in a sex dimorphism, further favoring them in counteracting the progression of the SARS-CoV-2 infection

    MILIARY TUBERCULOSIS IN THE XXI CENTURY – A CASE REPORT

    Get PDF
    Introdução: Atualmente, a tuberculose ainda representa um sério problema de saúde pública. A idade precoce e a infeção VIH constituem importantes fatores de risco para doença grave ou disseminada. Caso clínico: Apresentamos o caso de uma menina de três anos de idade observada por febre prolongada sem foco infecioso evidente ao exame físico. O estudo analítico inicial foi sugestivo de infeção urinária, pelo que iniciou antibioticoterapia empírica. A urocultura confirmou esse diagnóstico, mas a febre persistiu. Na investigação complementar, a radiografia torácica revelou um infiltrado pulmonar com padrão miliar. O Mycobacterium tuberculosis foi isolado no aspirado gástrico, líquor e urina. Iniciou tratamento com antituberculosos e corticóide, com melhoria clínica significativa. Conclusões: Nesta era de tecnologia médica avançada, a tuberculose ainda é um desafio diagnóstico, especialmente quando a apresentação clínica é atípica e extrapulmonar. Um elevado índice de suspeição clínica é fundamental, pois a instituição precoce do tratamento é decisiva para o prognóstico

    X-ray Reflection and An Exceptionally Long Thermonuclear Helium Burst from IGR J17062-6143

    Get PDF
    Thermonuclear X-ray bursts from accreting neutron stars power brief but strong irradiation of their surroundings, providing a unique way to study accretion physics. We analyze MAXI/Gas Slit Camera and Swift/XRT spectra of a day-long flash observed from IGR J17062-6143 in 2015. It is a rare case of recurring bursts at a low accretion luminosity of 0.15% Eddington. Spectra from MAXI, Chandra, and NuSTAR observations taken between the 2015 burst and the previous one in 2012 are used to determine the accretion column. We find it to be consistent with the burst ignition column of 5 × 10^(10) g cm^(−2), which indicates that it is likely powered by burning in a deep helium layer. The burst flux is observed for over a day, and decays as a straight power law: F ∝ t^(-1.15). The burst and persistent spectra are well described by thermal emission from the neutron star, Comptonization of this emission in a hot optically thin medium surrounding the star, and reflection off the photoionized accretion disk. At the burst peak, the Comptonized component disappears, when the burst may dissipate the Comptonizing gas, and it returns in the burst tail. The reflection signal suggests that the inner disk is truncated at ~102 gravitational radii before the burst, but may move closer to the star during the burst. At the end of the burst, the flux drops below the burst cooling trend for 2 days, before returning to the pre-burst level

    Decellularized cryopreserved human pericardium: a validation study towards tissue bank practice

    Get PDF
    Pericardial patches are currently used as reconstructive material in cardiac surgery for surgical treatment of cardiac septal defects. Autologous pericardial patches, either treated with glutaraldehyde or not, can be used as an alternative to synthetic materials or xenograft in congenital septal defects repair. The availability of an allogenic decellularized pericardium could reduce complication during and after surgery and could be a valid alternative. Decellularization of allogenic tissues aims at reducing the immunogenic reaction that might trigger inflammation and tissue calcification over time. The ideal graft for congenital heart disease repair should be biocompatible, mechanically resistant, non-immunogenic, and should have the ability to growth with the patients. The aim of the present study is the evaluation of the efficacy of a new decellularization protocol of homologous pericardium, even after cryopreservation. The technique has proven to be suitable as a tissue bank procedure and highly successful in the removal of cells and nucleic acids content, but also in the preservation of collagen and biomechanical properties of the human pericardium

    ANTICHI SBARCHI E NUOVE METE DI LIBERTA'

    Get PDF
    Convegno sulla spazializzazione del fenomeno delle migrazioni internazional

    Cross-reactivity of 4CMenB vaccine-induced antibodies against meningococci belonging to non-B serogroups in Italy

    Get PDF
    The four-component meningococcal serogroup B vaccine (4CMenB) contains antigens present in the majority of meningococci causing invasive meningococcal disease (IMD) and may potentially offer protection against strains belonging to non-B serogroups. This study aimed to evaluate the ability of 4CMenB-induced antibodies to kill, in a human serum bactericidal assay (hSBA), non-B meningococci belonging to the main genotypes responsible for IMD in Italy. Meningococci, collected between 2015 and 2017, was characterized for PorA, FetA and sequence type, and for clonal complex. Twenty non-B isolates, representative of the most frequent genotypes, were molecularly characterized for 4CMenB antigens and tested in hSBA with sera from 4CMenB-vaccinated infants and adolescents. Among twenty isolates, eleven were serogroup C, five were Y, two W and two X. All isolates contained genes encoding for fHbp and NHBA antigens and four harbored the NadA full-length encoding gene. Positive hSBA titers were obtained against all serogroup W, X and Y isolates and against five serogroup C isolates. These data show that the 4CMenB vaccine can induce bactericidal antibodies against genetically representative meningococcal W, Y and X strains from Italy. For serogroup C, different susceptibilities to killing were observed for strains with similar antigenic repertoires

    Poly(Vinyl alcohol)/gelatin scaffolds allow regeneration of nasal tissues

    Get PDF
    Need for regeneration and repair of nasal tissues occurs as a consequence of several pathologies affecting the nose, including, but not limited to infective diseases, traumas and tumor resections. A platform for nasal tissue regeneration was set up using poly(vinyl alcohol)/gelatin sponges with 20%–30% (w/w) gelatin content to be used as scaffolds, for their intrinsic hydrophilic, cell adhesive and shape recovery properties. We propose mesodermal progenitor cells (MPCs) isolated from the bone marrow as a unique stem cell source for obtaining different connective tissues of the nose, including vascular tissue. Finally, epithelial cell immune response to these scaffolds was assessed in vitro in an environment containing inflammatory molecules. The results showed that mesenchymal stromal cells (MSCs) deriving from MPCs could be used to differentiate into cartilage and fibrous tissue; whereas, in combination with endothelial cells still deriving from MPCs, into pre-vascularized bone. Finally, the scaffold did not significantly alter the epithelial cell response to inflammatory insults derived from interaction with bacterial molecules
    corecore