13 research outputs found

    Colorimetric sensing of anions by a neutral biphenyl based amide receptor

    Get PDF
    A new colorimetric sensor for fluoride is described. Compound 1 shows an open structure and its behaviour is compared with that of two related closed compounds 2 and 3. In all cases, the red colour developed in the presence of fluoride can be related to deprotonation processes, however ligand 1 gives rise to a faster colour change than 2 or 3 because of its higher flexibility. Other halides as well as carboxylates have been studied and the stoichiometry and complexation constants for the corresponding ligands have been determined.Costero Nieto, Ana Maria, [email protected] ; Peransi Llopis, Sergio Manuel, [email protected]

    Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Get PDF
    While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.The authors would like to thank the European Union for their funding of the project PBSA “Photonic Biosensor for Space Application” within the FP7-program (FP7 program Grant Agreement No. 312942-PBSA. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI

    Integration of Microfluidics, Photonic Integrated Circuits and Data Acquisition and Analysis Methods in a Single Platform for the Detection of Swine Viral Diseases

    Full text link
    [EN] Simple Summary: The control of several swine viral diseases relies mainly on evidence-based prevention protocols due to the lack of effective treatments or vaccines. To design these protocols, laboratory investigation of viral infections is critical to confirm their occurrence and determine their epizootiology. However, laboratory confirmation of certain swine viral diseases is a time-consuming and labor-intensive process, requiring scientific personnel with relevant expertise. Point-of-Care (POC) diagnostics are tests and devices that provide clinically relevant information on-site, facilitating decision-makers to swiftly take countermeasures for disease control. In the present study, novel photonic biosensors were integrated into a single, automated POC device that can record and analyze changes in the sensors' refractive index, allowing the detection of Porcine Parvovirus (PPV) and Porcine Circovirus 2 (PCV-2) in oral fluids within 75 min. The objective of this work was to validate this device using reference and field samples (oral fluids). The system was able to detect PPV and PCV-2 in oral fluid samples satisfactorily. The device can be directly deployed in farms for the fast diagnosis of these diseases, contributing to farm biosecurity.Viral diseases challenge the health and welfare of pigs and undermine the sustainability of swine farms. Their efficient control requires early and reliable diagnosis, highlighting the importance of Point of Care (POC) diagnostics in veterinary practice. The objective of this study was to validate a novel POC system that utilizes Photonic Integrated Circuits (PICs) and microfluidics to detect swine viral pathogens using oral fluids and Porcine Parvovirus (PPV) and Porcine Circovirus 2 (PCV-2) as proofs of concept. The sensitivity and specificity of the device were calculated for both viruses, and Receiver Operating Characteristic (ROC) curves were drawn. PPV had an Area Under Curve (AUC) value of 0.820 (95% CI: 0.760 to 0.880, p < 0.0001), and its optimal efficiency threshold of detection shifts was equal to 4.5 pm (68.6% sensitivity, 77.1% specificity and Limit of Detection (LOD) value 10(6) viral copies/mL). PCV-2 had an AUC value of 0.742 (95% CI: 0.670 to 0.815, p < 0.0001) and an optimal efficiency threshold of shifts equal to 6.5 pm (69.5% sensitivity, 70.3% specificity and LOD 3.3 x 10(5) copies/mL). In this work, it was proven that PICs can be exploited for the detection of swine viral diseases. The novel device can be directly deployed on farms as a POC diagnostics tool.This research was funded by E.U.'s H2020 SWINOSTICS project under the grant agreement ID 771649.Manessis, G.; Mourouzis, C.; Griol Barres, A.; Zurita-Herranz, D.; Peransi, S.; Sánchez, C.; Giusti, A.... (2021). Integration of Microfluidics, Photonic Integrated Circuits and Data Acquisition and Analysis Methods in a Single Platform for the Detection of Swine Viral Diseases. Animals. 11(11):1-18. https://doi.org/10.3390/ani11113193118111

    Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon

    Get PDF
    This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.007664. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] In this work, we demonstrate experimentally the use of an array of gold nanodisks on functionalized silicon for chemosensing purposes. The metallic nanostructures are designed to display a very strong plasmonic resonance in the infrared regime, which results in highly sensitive sensing. Unlike usual experiments which are based on the functionalization of the metal surface, we functionalized here the silicon substrate. This silicon surface was modified chemically by buildup of an organosilane self-assembled monolayer (SAM) containing isocyanate as functional group. These groups allow for an easy surface regeneration by simple heating, thanks to the thermally reversible interaction isocyanate-analyte, which allows the cyclic use of the sensor. The technique showed a high sensitivity to surface binding events in gas and allowed the surface regeneration by heating of the sensor at 150°C. A relative wavelength shift ¿¿max/¿0 = 0.027 was obtained when the saturation level was reached. © 2011 Optical Society of America.Financial support by the Spanish MICINN under contracts CONSOLIDER EMET (CSD2008-00066) and TEC2008-06871-C02-02 and European Commission FP7 under the FET-Open project TAILPHOX 233833 is gratefully acknowledged.Rodríguez Cantó, PJ.; Martínez Marco, ML.; Rodríguez Fortuño, FJ.; Tomás Navarro, B.; Ortuño Molinero, R.; Peransi Llopis, SM.; Martínez Abietar, AJ. (2011). Demonstration of near infrared gas sensing using gold nanodisks on functionalized silicon. Optics Express. 19(8):7664-7672. https://doi.org/10.1364/OE.19.00766476647672198Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., & Atwater, H. A. (2001). Plasmonics-A Route to Nanoscale Optical Devices. Advanced Materials, 13(19), 1501-1505. doi:10.1002/1521-4095(200110)13:193.0.co;2-zLink, S., & El-Sayed, M. A. (2003). OPTICALPROPERTIES ANDULTRAFASTDYNAMICS OFMETALLICNANOCRYSTALS. Annual Review of Physical Chemistry, 54(1), 331-366. doi:10.1146/annurev.physchem.54.011002.103759Willets, K. A., & Van Duyne, R. P. (2007). Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 58(1), 267-297. doi:10.1146/annurev.physchem.58.032806.104607Anker, J. N., Hall, W. P., Lyandres, O., Shah, N. C., Zhao, J., & Van Duyne, R. P. (2008). Biosensing with plasmonic nanosensors. Nature Materials, 7(6), 442-453. doi:10.1038/nmat2162Zhao, J., Zhang, X., Yonzon, C. R., Haes, A. J., & Van Duyne, R. P. (2006). Localized surface plasmon resonance biosensors. Nanomedicine, 1(2), 219-228. doi:10.2217/17435889.1.2.219SHANKARAN, D., GOBI, K., & MIURA, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. doi:10.1016/j.snb.2006.09.014Miura, N., Ogata, K., Sakai, G., Uda, T., & Yamazoe, N. (1997). Detection of Morphine in ppb Range by Using SPR (Surface- Plasmon-Resonance) Immunosensor. Chemistry Letters, 26(8), 713-714. doi:10.1246/cl.1997.713Shankaran, D. R., Matsumoto, K., Toko, K., & Miura, N. (2006). Development and comparison of two immunoassays for the detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance. Sensors and Actuators B: Chemical, 114(1), 71-79. doi:10.1016/j.snb.2005.04.013Cosnier, S. (1999). Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, 14(5), 443-456. doi:10.1016/s0956-5663(99)00024-xLee, J. W., Sim, S. J., Cho, S. M., & Lee, J. (2005). Characterization of a self-assembled monolayer of thiol on a gold surface and the fabrication of a biosensor chip based on surface plasmon resonance for detecting anti-GAD antibody. Biosensors and Bioelectronics, 20(7), 1422-1427. doi:10.1016/j.bios.2004.04.017Mark, S. S., Sandhyarani, N., Zhu, C., Campagnolo, C., & Batt, C. A. (2004). Dendrimer-Functionalized Self-Assembled Monolayers as a Surface Plasmon Resonance Sensor Surface. Langmuir, 20(16), 6808-6817. doi:10.1021/la0495276Kato, K., Dooling, C. M., Shinbo, K., Richardson, T. H., Kaneko, F., Tregonning, R., … Hunter, C. A. (2002). Surface plasmon resonance properties and gas response in porphyrin Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198-200, 811-816. doi:10.1016/s0927-7757(01)01006-8Senaratne, W., Andruzzi, L., & Ober, C. K. (2005). Self-Assembled Monolayers and Polymer Brushes in Biotechnology:  Current Applications and Future Perspectives. Biomacromolecules, 6(5), 2427-2448. doi:10.1021/bm050180aStewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A., & Nuzzo, R. G. (2008). Nanostructured Plasmonic Sensors. Chemical Reviews, 108(2), 494-521. doi:10.1021/cr068126nYin, L., Liu, Y., Ke, Z., & Yin, J. (2009). Preparation of a blocked isocyanate compound and its grafting onto styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer. European Polymer Journal, 45(1), 191-198. doi:10.1016/j.eurpolymj.2008.10.016Suyama, K., Iriyama, H., Shirai, M., & Tsunooka, M. (2001). Curing Systems Using Photolysis of Carbomoyloxyimino Groups and Themally Regenerated Isocyanate Groups. Journal of Photopolymer Science and Technology, 14(2), 155-158. doi:10.2494/photopolymer.14.155Patskovsky, S., Kabashin, A. V., Meunier, M., & Luong, J. H. T. (2004). Near-infrared surface plasmon resonance sensing on a silicon platform. Sensors and Actuators B: Chemical, 97(2-3), 409-414. doi:10.1016/j.snb.2003.09.023Shelton, D. J., Peters, D. W., Sinclair, M. B., Brener, I., Warne, L. K., Basilio, L. I., … Boreman, G. D. (2010). Effect of thin silicon dioxide layers on resonant frequency in infrared metamaterials. Optics Express, 18(2), 1085. doi:10.1364/oe.18.001085Bhalla, V., Carrara, S., Stagni, C., & Samorì, B. (2010). Chip cleaning and regeneration for electrochemical sensor arrays. Thin Solid Films, 518(12), 3360-3366. doi:10.1016/j.tsf.2009.10.022Malinsky, M. D., Kelly, K. L., Schatz, G. C., & Van Duyne, R. P. (2001). Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. Journal of the American Chemical Society, 123(7), 1471-1482. doi:10.1021/ja003312aSpencer, M. J. S., & Nyberg, G. L. (2004). Adsorption of silane and methylsilane on gold surfaces. Surface Science, 573(2), 151-168. doi:10.1016/j.susc.2004.08.043Gradess, R., Abargues, R., Habbou, A., Canet-Ferrer, J., Pedrueza, E., Russell, A., … Martínez-Pastor, J. P. (2009). Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films. Journal of Materials Chemistry, 19(48), 9233. doi:10.1039/b910020bBrolo, A. G., Gordon, R., Leathem, B., & Kavanagh, K. L. (2004). Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films. Langmuir, 20(12), 4813-4815. doi:10.1021/la0493621MAURIZ, E., CALLE, A., MONTOYA, A., & LECHUGA, L. (2006). Determination of environmental organic pollutants with a portable optical immunosensor. Talanta, 69(2), 359-364. doi:10.1016/j.talanta.2005.09.049Yu, Q., Chen, S., Taylor, A. D., Homola, J., Hock, B., & Jiang, S. (2005). Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical, 107(1), 193-201. doi:10.1016/j.snb.2004.10.064Cui, X. (2003). Real-time immunoassay of ferritin using surface plasmon resonance biosensor. Talanta, 60(1), 53-61. doi:10.1016/s0039-9140(03)00043-

    Photonic Label-Free Biosensors for Fast and Multiplex Detection of Swine Viral Diseases

    Full text link
    [EN] In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine Parvovirus (PPV), Porcine Circovirus 2 (PCV2), and Swine Influenza Virus A (SIV). The optical biosensors are based on evanescent wave technology and, in particular, on Resonant Rings (RRs) fabricated in silicon nitride. The novel biosensors were packaged in an integrated sensing cartridge that included a microfluidic channel for buffer/sample delivery and an optical fiber array for the optical operation of the PICs. Antibodies were used as molecular recognition elements (MREs) and were selected based on western blotting and ELISA experiments to ensure the high sensitivity and specificity of the novel sensors. MREs were immobilized on RR surfaces to capture viral antigens. Antibody-antigen interactions were transduced via the RRs to a measurable resonant shift. Cell culture supernatants for all of the targeted viruses were used to validate the biosensors. Resonant shift responses were dose-dependent. The results were obtained within the framework of the SWINOSTICS project, contributing to cover the need of the novel diagnostic tools to tackle swine viral diseases.This work was funded by the EU-2020 program under grant agreement Nº 771649-SWINOSTICS project.Gómez-Gómez, MI.; Sánchez, C.; Peransi, S.; Zurita, D.; Bellieres, L.; Recuero, S.; Rodrigo, M.... (2022). Photonic Label-Free Biosensors for Fast and Multiplex Detection of Swine Viral Diseases. Sensors. 22(3):1-14. https://doi.org/10.3390/s2203070811422

    Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project

    Full text link
    [EN] This paper presents the concept of a novel adaptable sensing solution currently being developed under the EU Commission-founded PHOTONGATE project. This concept will allow for the quantification of multiple analytes of the same or different nature (chemicals, metals, bacteria, etc.) in a single test with levels of sensitivity and selectivity at/or over those offered by current solutions. PHOTONGATE relies on two core technologies: a biochemical technology (molecular gates), which will confer the specificity and, therefore, the capability to be adaptable to the analyte of interest, and which, combined with porous substrates, will increase the sensitivity, and a photonic technology based on localized surface plasmonic resonance (LSPR) structures that serve as transducers for light interaction. Both technologies are in the micron range, facilitating the integration of multiple sensors within a small area (mm2). The concept will be developed for its application in health diagnosis and food safety sectors. It is thought of as an easy-to-use modular concept, which will consist of the sensing module, mainly of a microfluidics cartridge that will house the photonic sensor, and a platform for fluidic handling, optical interrogation, and signal processing. The platform will include a new optical concept, which is fully European Union Made, avoiding optical fibers and expensive optical components.The micro-nanofabrication capabilities required in the PHOTONGATE project- 101093042 are funded by the Pluri-Regional FEDER funding Plan 2014-2020 European Commission. This research project has received funding from the European Union¿s HORIZON-CL4-2022 research and innovation programme under grant agreement ID 101093042, PHOTONGATE projectNieves-Paniagua, Ó.; Ortiz De Zárate-Díaz, D.; Aznar, E.; Caballos-Gómez, MI.; Garrido-García, EM.; Martínez-Máñez, R.; Dortu, F.... (2023). Development of Photonic Multi-Sensing Systems Based on Molecular Gates Biorecognition and Plasmonic Sensors: The PHOTONGATE Project. Sensors. 23(20):1-13. https://doi.org/10.3390/s23208548113232

    Experimental demonstration of integrated photonic free-label biosensor for CBRN threats using micro-ring resonators

    No full text
    In this work, we present integrated photonic sensor design to detect Chemical, Biological, Radiological and Nuclear (CBRN) threats, where high sensitivity and no false positive are strictly required. The sensor is formed by several parallel micro-ring resonators exposed to the environment and functionalized to recognized target analytes in a free-label way. Experimental demonstration of the working principle was performed using simulant compounds that permit tests of the features of the Photonic Integrated Circuit (PIC) in a safe environment. The results show the possibility of using PICs to detect as low as 20 ppb of Ovalbumin (simulant for Ricin A toxin) and 200 CFU/ml of Bacillus cereus spores (simulant for Bacillus anthracis). These results push forward the possibility of using PICs as biochemical sensors, also for critical objectives

    Design and Development of Photonic Biosensors for Swine Viral Diseases Detection

    No full text
    In this paper we introduce a field diagnostic device based on the combination of advanced bio-sensing and photonics technologies, to tackle emerging and endemic viruses causing swine epidemics, and consequently significant economic damage in farms. The device is based on the use of microring resonators fabricated in silicon nitride with CMOS compatible techniques. In the paper, the designed and fabricated photonic integrated circuit (PIC) sensors are presented and characterized, showing an optimized performance in terms of optical losses (30 dB per ring) and extinction ration for ring resonances (15 dB). Furthermore, the results of an experiment for porcine circovirus 2 (PCV2) detection by using the developed biosensors are presented. Positive detection for different virus concentrations has been obtained. The device is currently under development in the framework of the EU Commission co-funded project SWINOSTICS

    Design and Development of Photonic Biosensors for Swine Viral Diseases Detection

    No full text
    [EN] In this paper we introduce a field diagnostic device based on the combination of advanced bio-sensing and photonics technologies, to tackle emerging and endemic viruses causing swine epidemics, and consequently significant economic damage in farms. The device is based on the use of microring resonators fabricated in silicon nitride with CMOS compatible techniques. In the paper, the designed and fabricated photonic integrated circuit (PIC) sensors are presented and characterized, showing an optimized performance in terms of optical losses (30 dB per ring) and extinction ration for ring resonances (15 dB). Furthermore, the results of an experiment for porcine circovirus 2 (PCV2) detection by using the developed biosensors are presented. Positive detection for different virus concentrations has been obtained. The device is currently under development in the framework of the EU Commission co-funded project SWINOSTICS.This work was funded by the EU-H2020 program under grant agreement N¿ 771649-SWINOSTICS project.Griol Barres, A.; Peransi, S.; Rodrigo, M.; Hurtado Montañés, J.; Bellieres, LC.; Ivanova-Angelova, T.; Zurita, D.... (2019). Design and Development of Photonic Biosensors for Swine Viral Diseases Detection. Sensors. 19(18). https://doi.org/10.3390/s19183985191

    A Diagnostic Device for In-Situ Detection of Swine Viral Diseases: The SWINOSTICS Project

    No full text
    In this paper, we present the concept of a novel diagnostic device for on-site analyses, based on the use of advanced bio-sensing and photonics technologies to tackle emerging and endemic viruses causing swine epidemics and significant economic damage in farms. The device is currently under development in the framework of the EU Commission co-funded project. The overall concept behind the project is to develop a method for an early and fast on field detection of selected swine viruses by non-specialized personnel. The technology is able to detect pathogens in different types of biological samples, such as oral fluids, faeces, blood or nasal swabs. The device will allow for an immediate on-site threat assessment. In this work, we present the overall concept of the device, its architecture with the technical requirements, and all the used innovative technologies that contribute to the advancements of the current state of the art
    corecore