58 research outputs found

    Carbon Footprint Assessment of Spanish Dairy Cattle Farms : effectiveness of Dietary and Farm Management Practices as a Mitigation Strategy

    Get PDF
    Greenhouse gas emissions and the carbon footprint (CF) were estimated in twelve Spanish dairy farms selected from three regions (Mediterranean, MED; Cantabric, CAN; and Central, CEN) using a partial life cycle assessment through the Integrated Farm System Model (IFSM). The functional unit was 1 kg of energy corrected milk (ECM). Methane emissions accounted for the largest contribution to the total greenhouse gas (GHG) emissions. The average CF (kg CO2-eq/kg of ECM) was 0.84, being the highest in MED (0.98), intermediate in CEN (0.84), and the lowest in CAN (0.67). Two extreme farms were selected for further simulations: one with the highest non-enteric methane (MED1), and another with the highest enteric methane (CAN2). Changes in management scenarios (increase milk production, change manure collection systems, change manure-type storage method, change bedding type and installation of an anaerobic digester) in MED1 were evaluated with the IFSM model. Changes in feeding strategies (reduce the forage: concentrate ratio, improve forage quality, use of ionophores) in CAN2 were evaluated with the Cornell Net Carbohydrate and Protein System model. Results indicate that changes in management (up to 27.5% reduction) were more efficient than changes in dietary practices (up to 3.5% reduction) in reducing the carbon footprint

    Modeling Greenhouse Gas Emissions from Spanish Dairy and Beef farms: Mitigation Strategies

    Get PDF
    ABSTRACT Greenhouse gas (GHG) emissions and their potential effect on the environment has become an important national and international issue. Dairy and beef production, along with all other types of animal agriculture, are recognized sources of GHG emissions, but little information exists on the net emissions from dairy and beef farms. Component models for predicting all important sources of CH4, N2O, and CO2 from primary and secondary sources in dairy production were integrated in a software tool called the Integrate Farm System Model (IFSM). This tool calculates the carbon footprint of dairy and beef production as the net exchange of all GHG in CO2 equivalent units per unit of energy-corrected milk (ECM) produced or kg body weight (BW). The IFSM and Cornell Net Carbohydrate and Protein System (CNCPS) were used during this study to evaluate typical Spanish dairy farms for GHG emissions calculation and diet evaluation for methane production, respectively. The Three most important regions of dairy cattle production in Spain were selected Mediterranean (Catalonia, Valencia and Murcia), Cantabric Area (Galicia, Asturias and Cantabria) and Central zone (Castilla-La Mancha, Castilla-Leon, Madrid and Aragon), in addition to two other farms (one organic and one from Baleares Island). The average carbon footprint of all evaluated farms was 0.83 kg of CO2 equivalent units/ kg of ECM. Mediterranean farms have the highest Carbon footprint (average 0.98 kg CO2e/kg of ECM), while Cental Zone was 0.84 and the lowest was in Cantabric farms which (0.67). Two extreme farms were selected the first one had the highest carbon footprint and non-enteric methane (197MA), while the second had the lowest carbon footprint and the highest enteric methane (64CA), the first one was simulated by the IFSM model using different management change scenarios, while the second was simulated with CNCPS model using different dietary change strategies. We found that the management change reduced methane emission up to 30% while dietary change reduced it up to 5%. Three representative feedlot beef Spanish farms (two farms without corn silage; one Holstein and another mixed breed, and the third with corn silage) were used to simulate GHG emissions using the same models. The carbon footprint values ranged from 6.38 to 7.03 kg with an average value of 6.86 CO2e per kg BW. The feedlot farm with corn silage had an average carbon footprint value of 6.98 Kg CO2e/ Kg BW while without corn silage was 6.90 Kg CO2e/ Kg BW. It was concluded that both the Spanish dairy and beef sector has a lower carbon footprint and the management strategies provide a greater potential to reduce methane emissions as compared with dietary scenarios changes

    Ruminal Microbial Degradation of Individual Amino Acids from Heat-Treated Soyabean Meal and Corn Gluten Meal in Continuous Culture

    Get PDF
    Altres ajuts: Comisión Interministerial de Ciencia y Tecnología AGF97/0444Eight dual-flow continuous culture fermenters were used in three periods to study the effects of diets containing heat-treated soyabean meal (HSBM) or corn gluten meal (CGM) on ruminal microbial fermentation and the degradation of individual amino acids (AA). Treatments were a mix of non-protein nitrogen (N; urea and tryptone) that were progressively substituted (0, 33, 67 and 100%) for HSBM or CGM. Ruminal escape of AA was calculated with the slope ratio technique. Total volatile fatty acids (95.0 mM) and molar proportions (mol/100 mol) of acetate (59.3), propionate (21.8) and butyrate (10.5) were not affected by the treatments. As the level of HSBM or CGM increased, the concentration of ammonia-N and the degradation of protein decreased (p < 0.01), and the flows of nonammonia and dietary N increased (p < 0.01) quadratically. Compared with HSBM, CGM provided the highest flow (g/d) of total (20.6 vs. 18.3, p < 0.01), essential (9.04 vs. 8.25, p < 0.04) and nonessential (11.5 vs. 10.0, p < 0.01) AA, and increased linearly (p < 0.01) as the level of supplemental protein increased. Ruminal degradation of essential AA was higher (p < 0.04) than nonessential AA in CGM, but not in HSBM. Degradation of lysine was higher (p < 0.01) in both proteins, and degradation of methionine was higher in CGM. Ruminal degradation of individual AAs differ within and between protein sources and needs to be considered in precision feeding models

    Relative bioavailability of 3 rumen-undegradable methionine sources in dairy cows using the area under the curve technique

    Get PDF
    The objective of this study was to evaluate the relative bioavailability of two 2-hydroxy-4-(methylthio)butanoic isopropyl esters (HMBi) obtained through different production processes and an encapsulated rumen-protected Met using the area under the curve (AUC) method. The new HMBi product (Kessent MF Liquid, Kemin Animal Nutrition and Health) was compared with an existing HMBi product (Metasmart, Adisseo SAS) and a pH-sensitive coated Met (Smartamine, Adisseo SAS). Nine multiparous lactating cows (30 kg of milk/d and 227 d in milk) fed a 45:55 forage:concentrate diet were randomly assigned within square to a triplicate 3 × 3 Latin square design. Each period consisted of a 3-d sampling period and a 3-d washout period. Treatments were dosed on d 1 of each period, and blood samples were collected from the coccygeal vein at 0, 1, 2, 3, 4, 6, 9, 12, 24, 30, and 48 h thereafter. The daily dose was 50 g of Met equivalent of each treatment. The HMBi treatments were administered directly into the cow's mouth, whereas Smartamine was fed mixed with 0.5 kg of concentrate and fully consumed within 15 min. Nonlinear models were fitted to raw data, and the basal concentration at time 0 h, time at peak (Tmax), concentration at peak, and AUC of plasma Met were determined. The Met basal concentration at t = 0 h (26.7 ± 7.67 µ M) and concentration at peak (210 ± 22.2 µ M) were similar among treatments, but the Tmax (11.3 vs. 1.4 h) was delayed and the AUC was 1.8-fold larger (3,457 vs. 1,868 arbitrary units) in Smartamine compared with HMBi. Results of this study indicate that the 2 HMBi products have similar plasma kinetics and bioavailability. Smartamine had different kinetics compared with HMBi products, with delayed Tmax and larger AUC and relative bioavailability

    Increasing sodium bicarbonate level in high-concentrate diets for heifers. I. Effects on intake, water consumption and ruminal fermentation

    Get PDF
    Four ruminally fistulated Holstein heifers (BW = 264 ± 12 kg) were used in a 4 x 4 Latin square design experiment to determine the effect of increasing levels of sodium bicarbonate (BICARB; 0%, 1.25%, 2.50% and 5%, on concentrate dry matter (DM) basis) on DM intake (DMI), water consumption and ruminal fermentation. Sampling was carried out in the last week of each four 21-day experimental periods. Heifers were offered concentrate (13.4 ± 0.04% crude protein (CP), 13.3 ± 0.44% NDF, 51.7 ± 0.97% starch) and barley straw once daily at 0830 h ad libitum. There was a linear decrease in concentrate DMI and a linear increase in straw DMI with increasing buffer level in the diet, resulting in a tendency towards a linear decrease in total DMI. Intake of concentrate was 6.89, 7.66, 6.72 and 5.72 ± 0.83 kg/day, whereas straw intakes were 0.73, 0.84, 0.94 and 1.06 ± 0.14 kg/day, for the 0%, 1.25%, 2.5% and 5% BICARB, respectively. Water consumption was not affected by treatments when expressed as l/day or percentage of BW, but increased linearly when expressed as l/kg of DMI. The percentage of total daily water drunk in the morning (from 0830 to 1230 h) increased linearly with the level of buffer. Mean ruminal pH and total area under the pH curve were not affected with increasing buffer level. The lowest daily pH (5.65 ± 0.09) was not affected by treatments. A quadratic tendency (P 0.10) was observed in the number of hours and the area under the pH curve in which ruminal pH was below 5.8, with high values only at the 0% BICARB. Additionally, increasing bicarbonate level caused a linear increase in the ruminal pH at 2 and 4 h after feeding. Daily average NH3 N (2.4 ± 0.9 mg N/100 ml) and total volatile fatty acids (VFA) (143 ± 12 mM) concentrations were not affected by treatments. Daily average molar proportion of propionate decreased linearly, and acetate proportion and the acetate-to-propionate ratio were increased with increasing buffer level in the diet. Molar percentage of butyrate, isobutyrate and isovalerate, and branched-chain VFA concentration increased linearly as the level of bicarbonate increased in the diet. Results indicate that high levels of BICARB to finishing heifers fed high-concentrate diets may result in a decreased DMI without significant effects on mean ruminal pH, which may affect animal performance. All individual VFA proportions, except valerate, were changed by the addition of bicarbonate

    Increasing sodium bicarbonate level in high-concentrate diets for heifers. II. Effects on chewing and feeding behaviors

    Get PDF
    Four Holstein heifers (264 ± 12 kg initial BW) were used in a 4 x 4 Latin square design with 21-day experimental periods to determine the effect of increasing levels of sodium bicarbonate (BICARB) (0%, 1.25%, 2.5% and 5%, of concentrate dry matter (DM) basis) on chewing and feed intake behavior when fed high-concentrate diets. Concentrate (13.41% CP, 13.35% NDF) and barley straw were fed once a day at 0830 h ad libitum. Feed bunks placed on scales and video recording were used to measure 24-h feed intake and chewing behavior, respectively. The patterns of feeding behavior (feed intake, meal size and length) and chewing behavior (eating, ruminating and total chewing) were studied by dividing the day into 12 intervals of 2-h each, beginning at feeding (interval 1 through 12). Number of meals per day and eating rate decreased linearly with increasing buffer level, but meal length increased linearly. No treatment effects were observed in sum of daily meal lengths or average meal size. The treatment x interval interaction was significant on meal size, length and feed intake. The size and length of those meals occurring during the 4 h post-feeding increased linearly. However, meal size tended to decrease in the evening between 8 and 12 h, whereas feed intake decreased linearly from 6 to 10 h and from 12 to 14 h post-feeding. Buffer concentration did not affect the percentage of time spent ruminating, eating or drinking per day but the buffer level x interval interaction was significant. Time spent eating expressed as min per kg of DM or organic matter (OM) intake increased linearly with buffer levels. Proportion of time spent eating increased linearly during the intervals between 0 and 4 h post-feeding. Time spent ruminating decreased linearly during the 2 h post-feeding, and also in the evening from 12 to 14 h, and at night from 18 to 22 h post-feeding, but the effect was quadratic between 8 and 10 h when intermediate buffer levels showed the greatest ruminating time. Time spent drinking decreased linearly from 6 to 8 h but increased during the 2 h following feeding and from 10 to 12 h post-feeding. Daily eating rate and meal frequency decreased linearly as the buffer level increased, but average meal size and daily chewing times were not affected. However, significant time of the day x buffer level interactions were observed for feed intake, meal size and length and chewing behavior

    Diferències ruminals entre l'isard i la vaca

    Get PDF
    En el procés digestiu dels remugants intervé una complexe població de microorganismes que degrada la matèria vegetal i possibilita obtenir energia útil per a l'animal hoste. L'isard i la vaca, tot i ser tots dos remugants han d'utilitzar el seu sistema gastrointestinal de manera diferent. Investigadors de la UAB han comparat el funcionament de les poblacions bacterianes ruminals d'ambdues espècies. Han arribat a la conclusió que els bacteris de l'isard i de la vaca poden degradar la dieta en les mateixes condicions. No obstant això, els perfils de fermentació ruminal són diferents suggerint que existeixen diferències entre les poblacions bacterianes predominants d'ambdues espècies.En el proceso digestivo de los rumiantes interviene una compleja población de microorganismos que degradan la materia vegetal y posibilitan obtener energía útil para el animal huésped. El rebeco y la vaca, aunque ambos son rumiantes, han de utilizar su sistema gastrointestinal de manera diferente. Investigadores de la UAB han comparado el funcionamiento de las poblaciones bacterianas ruminales de ambas especies. Han llegado a la conclusión de que las bacterias del rebeco y de la vaca pueden degradar la dieta en las mismas condiciones. No obstante, los perfiles de fermentación ruminal son diferentes, sugiriendo que existen diferencias entre las poblaciones bacterianas de ambas especies

    The use of an activity monitoring system for the early detection of health disorders in young bulls

    Get PDF
    Bulls (n = 770, average age = 127 days, SD = 53 days of age) were fitted with an activity monitoring device for three months to study if behavior could be used for early detection of diseases. The device measured the number of steps, lying time, lying bouts, and frequency and time of attendance at the feed bunk. All healthy bulls (n = 699) throughout the trial were used to describe the normal behavior. A match-pair test was used to assign healthy bulls for the comparison vs. sick bulls. The model was developed with 70% of the data, and the remaining 30% was used for the validation. Healthy bulls did 2422 ± 128 steps/day, had 28 ± 1 lying bouts/day, spent 889 ± 12 min/day lying, and attended the feed bunk 8 ± 0.2 times/d for a total of 95 ± 8 min/day. From the total of bulls enrolled in the study, 71 (9.2%) were diagnosed sick. Their activities changed at least 10 days before the clinical signs of disease. Bulls at risk of becoming sick were predicted 9 days before clinical signs with a sensitivity and specificity of 79% and 81%, respectively. The validation of the model resulted in a sensitivity, specificity, and accuracy of 92%, 42%, and 82 %, respectively, and a 50% false positive and 12.5% false negative rates. Results suggest that activity-monitoring systems may be useful in the early identification of sick bulls. However, the high false positive rate may require further refinement

    Interactions among natural active ingredients to improve the efficiency of rumen fermentation in vitro

    Get PDF
    Funding: TECHNA France Nutrition, UAB project number: CF616381.Twelve essential oils (EO): Anise star, cassia, geraniol, lemongrass (LEM), limonene, thyme, tea tree, coriander (COR), capsicum, black pepper, turmeric and ginger (GIN), in Experiment 1 at three doses; and different combinations of LEM, COR and GIN oils in Experiment 2, were evaluated in in vitro batch microbial fermentation using ruminal fluid from four dairy cows fed a 50:50 forage: concentrate diet. In experiment 1, LEM tended to increase the propionate proportion and tended to decrease the acetate to propionate ratio. Anise star, COR, and thyme tended to increase butyrate proportion. Capsicum, COR, and thyme decreased ammonia-N concentration. In experiment 2, a synergy was observed between LEM and COR that resulted in an increase in total volatile fatty acids and propionate proportion, and a decrease in the acetate to propionate ratio. However, the addition of high doses of GIN to the mix had an antagonistic effect on the rumen fermentation profile of the LEM + COR mix. Careful selection and combination of these EO may result in useful mixtures with synergistic interactions to modulate rumen microbial fermentation profile

    A virtual dairy herd as a tool to teach dairy production and management

    Get PDF
    The objective of this project was to develop and test a web-based virtual dairy herd to help students understand the structure and functioning of a dairy herd, and to promote active learning. At the beginning of the course, the instructor defines the profiles of herds to be assigned to students (e.g., herd size, production, diets, fertility). Each student has a unique herd and engages in decision-making for desired management practices in the herd. Modeled events are based on cow physiology and normal dairy herd management practices. Students' activities and decisions include heat detection, insemination, pregnancy diagnosis, dry-off, diet specifications, feeding groups, colostrum and milk-replacer feeding, weaning, treatment of diseases, and milk withdrawal from the tank if antibiotics are used, among others. The daily output provides information on technical indexes, economic performance, counters of incorrect decisions as feedback for students, and score. Time in class can be devoted to discussions of dairy management issues. Additional exercises based on students' own herds (e.g., calculating required space for cows, land for forage production, manure management) can also be implemented. Students' performance in the virtual dairy farm was monitored over 3 years. The average score (n = 326) was 87.8 ± 1.1 over 100 points, suggesting that self-learning with the virtual dairy farm was highly successful. At the end of each semester, students (n = 277) responded to a survey on the experience of working with the virtual dairy herd. Most students (>87%) agreed that the virtual dairy herd was more effective and motivating than traditional lectures and helped them understand dairy production better. In an unannounced test conducted at least 2 wk before the final exam, students (n = 207) were asked 14 questions on dairy cattle and 14 similar questions on other species taught in the same class through traditional lectures. A similar test on the same students (n = 142) was conducted in their fifth semester (2 years later). Results were better in dairy compared with other species questions in the first (9.6 vs. 3.7) and fifth (8.0 vs. 3.8) semesters. The virtual dairy herd is an effective tool for teaching introductory courses in dairy production. The program can be accessed at www.virtualdairyfarm.org, and a manual and videos with instructions for instructors and students are available online
    • …
    corecore