9 research outputs found

    INTEGRAL/IBIS 17-yr hard X-ray all-sky survey

    Get PDF
    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL), launched in 2002, continues its successful work in observing the sky at energies E > 20 keV. The legacy of the mission already includes a large number of discovered or previously poorly studied hard X-ray sources. The growing INTEGRAL archive allows one to conduct an all-sky survey including a number of deep extragalactic fields and the deepest ever hard X-ray survey of the Galaxy. Taking advantage of the data gathered over 17 yr with the IBIS coded-mask telescope of INTEGRAL, we conducted survey of hard X-ray sources, providing flux information from 17 to 290 keV. The catalogue includes 929 objects, 890 of which exceed a detection threshold of 4.5 sigma and the rest are detected at 4.0 sigma-4.5 sigma and belong to known catalogued hard X-ray sources. Among the identified sources of known or suspected nature, 376 are associated with the Galaxy and Magellanic clouds, including 145 low-mass and 115 high-mass X-ray binaries, 79 cataclysmic variables, and 37 of other types; and 440 are extragalactic, including 429 active galactic nuclei (AGNs), 2 ultra-luminous sources, 1 supernova (AT2018cow), and 8 galaxy clusters. 113 sources remain unclassified. 46 objects are detected in the hard X-ray band for the first time. The LogN-LogS distribution of 356 non-blazar AGNs is measured down to a flux of 2 x 10(-12) erg s(-1) cm(-2) and can be described by a power law with a slope of 1.44 +/- 0.09 and normalization 8 x 10(-3) deg(-2) at 10(-11) erg s(-1) cm(-2). The LogN-LogS distribution of unclassified sources indicates that the majority of them are of extragalactic origin

    Regionally Adapted Model of an Ideal <i>Malus×domestica</i> Borkh Apple Variety for Industrial-Scale Cultivation in European Russia

    No full text
    Apple is one of the most common fruit crops in the Russian fruit-growing industry, with huge varietal diversity and a vast cultivation area. The key regions for industrial-scale apple cultivation are the Central, Central Chernozem, and North Caucasian Districts. The main disadvantage of the relevant apple cultivars, especially the ones intended for intensified horticultural practices, is their low resistance against abiotic stresses and the fruit’s low quality and poor marketable condition. In Russia, apple is a crop of strategic importance that is consistently included in the household food basket, so fruit producers hold new varieties to higher standards and expect them to outperform their predecessors in terms of yield per plant, resistance against abiotic and biotic stresses, and quality, as well as show strong competitiveness and a more rapid return on investment, while satisfying stricter requirements. The objective of the present study was to summarize the data on the phenotypic manifestations of economically valuable traits of the apple cultivars approved for use in the Russian Federation depending on the region of cultivation; to determine the parametric characteristics of the most valuable traits in the form of a model of an “ideal” regionally adapted industrial cultivar, and to identify the sources of the traits in the regions suitable for their production. A regionally adapted model of commercial apple cultivars, characterized by 28 features and properties divided into three groups and defining the cultivar’s resistance against abiotic and biotic stresses, yield per plant, product quality, and suitability for mechanized harvesting, is presented in this paper. In the European part of Russia, the optimal parameters of a commercial apple tree cultivar are as follows: plant height on a medium-sized rootstock under 3 m; potential yield per plant of at least 25–50 kg; high fruit uniformity above 80%; winter and late-winter harvest maturity period; high storability of over 210 days and good transportability; average fruit mass from 120 g to 220 g; juicy and shattering crisp pulp; small seed cavity; fragrant fruits with taste rating of at least 4.5 points; appearance rating of 5 points and attractive, mostly red, glossy color with natural wax bloom; regular, symmetric, but diverse shapes; content of sugar above 10%, ascorbic acid above 15 mg/100 g, organic acids up to 1% (for dessert varieties); content of soluble dry solids of at least 20%. The cultivars that come closest to the regionally adapted model of an ideal variety based on the set of features discussed are as follows: Feya, Soyuz, Orfej, Margo, Sirius, Noktyurn, Vasilisa Karmen, Florina, Dayton, Early Mac, Gala and Gala Schniga in the North Caucasian District; Svezhest’, Orlovskoe Poles’e, Aprel’skoe, Ven’yaminovskoe, Bolotovskoe, Vympel, Uspenskoe, Fregat, Bylina, Flagman, and Akademik Kazakov in the North Caucasian District; and varieties Imrus, Mayak Zagor’ya, and Bolotovskoe in the Central District. These cultivars are characterized by high resistance against weather anomalies, scab immunity, high yields, marketable quality, and storability. In addition, in southern regions, a prolonged bloom period acts as a protective adaptive response to low-temperature stress

    INTEGRAL reloaded: Spacecraft, instruments and ground system

    No full text
    International audienceThe European Space Agency’s INTErnational Gamma-Ray Astrophysics Laboratory (ESA/INTEGRAL) was launched aboard a Proton-DM2 rocket on 17 October 2002 at 06:41 CEST, from Baikonur in Kazakhstan. Since then, INTEGRAL has been providing long, uninterrupted observations (up to about 47h, or 170ksec, per satellite orbit of 2.7 days) with a large field-of-view (FOV, fully coded: 100 deg2), millisecond time resolution, keV energy resolution, polarization measurements, as well as additional wavelength coverage at optical wavelengths. This is realized by two main instruments in the 15keV to 10MeV energy range, the spectrometer SPI (spectral resolution 3keV at 1.8MeV) and the imager IBIS (angular resolution: 12arcmin FWHM), complemented by X-ray (JEM-X; 3–35keV) and optical (OMC; Johnson V-band) monitor instruments. All instruments are co-aligned to simultaneously observe the target region. A particle radiation monitor (IREM) measures charged particle fluxes near the spacecraft. The Anti-coincidence subsystems of the main instruments, built to reduce the background, are also very efficient all-sky Îł-ray detectors, which provide virtually omni-directional monitoring above ∌75keV. Besides the long, scheduled observations, INTEGRAL can rapidly (within a couple of hours) re-point and conduct Target of Opportunity (ToO) observations on a large variety of sources. INTEGRAL observations and their scientific results have been building an impressive legacy: The discovery of currently more than 600 new high-energy sources; the first-ever direct detection of 56Ni and 56Co radio-active decay lines from a Type Ia supernova; spectroscopy of isotopes from galactic nucleo-synthesis sources; new insights on enigmatic positron annihilation in the Galactic bulge and disk; and pioneering gamma-ray polarization studies. INTEGRAL is also a successful actor in the new multi-messenger astronomy introduced by non-electromagnetic signals from gravitational waves and from neutrinos: INTEGRAL found the first prompt electromagnetic radiation in coincidence with a binary neutron star merger. Up to now more than 1750 scientific papers based on INTEGRAL data have been published in refereed journals. In this paper, we will give a comprehensive update of the satellite status after more than 18 years of operations in a harsh space environment, and an account of the successful Ground Segment
    corecore