18 research outputs found

    Thermal Excitation of Broadband and Long-range Surface Waves on SiO 2 Submicron Films

    Full text link
    We detect thermally excited surfaces waves on a submicron SiO 2 layer, including Zenneck and guided modes in addition to Surface Phonon Polaritons. The measurements show the existence of these hybrid thermal-electromagnetic waves from near-(2.7 Ό\mum) to far-(11.2 Ό\mum) infrared. Their propagation distances reach values on the order of the millimeter, several orders of magnitude larger than on semi-infinite systems. These two features, spectral broadness and long range propagation, make these waves good candidates for near-field applications both in optics and thermics due to their dual nature.Comment: Applied Physics Letters, American Institute of Physics, 201

    Manipulation d’énergie thermique avec des ondes de surface Ă©lectromagnĂ©tique aux Ă©chelles micro- et anoscopiques

    No full text
    Surface phonon-polaritons (SPhPs) are evanescent electromagnetic surface waves generated by the phononphoton coupling and that propagate along the interface of a polar medium (such as SiO2 and SiC) and a dielectric one. In this work, we investigate possible applications of SPhPs for enhancing the thermal performance of micro- and nanoscale devices, focusing of thermal energy with micro-structures, decreasing the diffraction angles of infrared radiation on subwavelength apertures, and demonstrating broadband coherent thermal emission. We also perform infrared spectroscopy microscopy measurements of microscale objects and demonstrate long-range thermally excited surface modes in a broad frequency range. The results presented in this thesis can have possible applications in fields related to heat transfer, infrared optics, near-field thermal radiation, infrared microscopy, and polaritonics.Les phonons polaritons de surface (SPhPs) sont des ondes Ă©lectromagnĂ©tiques de surface Ă©vanescentes gĂ©nĂ©rĂ©es par le couplage phonon-photon et se propageant le long d’une interface entre un milieu polaire (tel que SiO2 et SiC) et un diĂ©lectrique. Dans ce mĂ©moire, nous nous intĂ©ressons Ă  de possibles applications des SPhPs pour amĂ©liorer les performances thermiques des nanosystĂšmes, en focalisant leur Ă©nergie thermique avec des micro- et nanostructures, en rĂ©duisant leurs angles de diffraction Ă  travers des ouvertures sub-longueur d’onde, et en dĂ©montrant leur Ă©mission thermique cohĂ©rente large-bande. Nous avons aussi effectuĂ© des mesures par microscopie spectrophotomĂ©trique infrarouge de micro-objets et dĂ©montrĂ© l’excitation thermique de modes de grandes longueurs de propagation dans un large domaine spectral. Nos rĂ©sultats sont obtenus sur des bases Ă  la fois thĂ©oriques, de simulations numĂ©riques et expĂ©rimentales. Ces travaux sont pertinents dans les domaines liĂ©s au transfert thermique, Ă  l’optique infrarouge, au rayonnement thermique de champ proche, Ă  la microscopie infrarouge, et Ă  la polaritonique

    Thermal energy manipulation via electromagnetic surface waves at micro and nanoscales

    No full text
    Les phonons polaritons de surface (SPhPs) sont des ondes Ă©lectromagnĂ©tiques de surface Ă©vanescentes gĂ©nĂ©rĂ©es par le couplage phonon-photon et se propageant le long d’une interface entre un milieu polaire (tel que SiO2 et SiC) et un diĂ©lectrique. Dans ce mĂ©moire, nous nous intĂ©ressons Ă  de possibles applications des SPhPs pour amĂ©liorer les performances thermiques des nanosystĂšmes, en focalisant leur Ă©nergie thermique avec des micro- et nanostructures, en rĂ©duisant leurs angles de diffraction Ă  travers des ouvertures sub-longueur d’onde, et en dĂ©montrant leur Ă©mission thermique cohĂ©rente large-bande. Nous avons aussi effectuĂ© des mesures par microscopie spectrophotomĂ©trique infrarouge de micro-objets et dĂ©montrĂ© l’excitation thermique de modes de grandes longueurs de propagation dans un large domaine spectral. Nos rĂ©sultats sont obtenus sur des bases Ă  la fois thĂ©oriques, de simulations numĂ©riques et expĂ©rimentales. Ces travaux sont pertinents dans les domaines liĂ©s au transfert thermique, Ă  l’optique infrarouge, au rayonnement thermique de champ proche, Ă  la microscopie infrarouge, et Ă  la polaritonique.Surface phonon-polaritons (SPhPs) are evanescent electromagnetic surface waves generated by the phononphoton coupling and that propagate along the interface of a polar medium (such as SiO2 and SiC) and a dielectric one. In this work, we investigate possible applications of SPhPs for enhancing the thermal performance of micro- and nanoscale devices, focusing of thermal energy with micro-structures, decreasing the diffraction angles of infrared radiation on subwavelength apertures, and demonstrating broadband coherent thermal emission. We also perform infrared spectroscopy microscopy measurements of microscale objects and demonstrate long-range thermally excited surface modes in a broad frequency range. The results presented in this thesis can have possible applications in fields related to heat transfer, infrared optics, near-field thermal radiation, infrared microscopy, and polaritonics

    Energy transport of surface phonon polaritons propagating along a chain of spheroidal nanoparticles

    No full text
    International audienceWe analyze in detail the energy transport of surface phonon polaritons propagating in a chain of spheroidal polar nanoparticles with both longitudinal and transversal polarizations. Explicit and closed-form expressions for the dispersion relation and propagation length are derived and used to determine the values of the nanoparticle polarizability and the interparticle distance that maximize the polariton propagation length. The thermal conductance in the ballistic regime and the thermal conductivity in the diffusive one are also determined and examined as a function of the geometry of the nanoparticles and their temperature. For a chain of cigar-shaped SiC nanoparticles in contact, an aspect ratio of 5, and surrounded by air; it is shown that: (i) The surface phonon polaritons propagate a distance of 10 ÎŒm along a chain of 100 nanoparticles. This propagation length is one order of magnitude longer than that for spherical nanoparticles. (ii) The polariton thermal conductivity is comparable with the one of air in a wide range of temperatures and is 41 mW m −1 K −1 at 500 K. (iii) The polariton thermal conductance increases with the temperature and at 500 K is 44 pW K −1 , which represents 9% of the quantum of thermal conductance. In view of the ultralow phonon thermal conductivity of a chain of polar nanoparticles in contact and their high surface area-to-volume ratios, the proposed theoretical model and obtained results are expected to be useful to experimentally quantify the energy transport of surface phonon polaritons propagating along these nanostructures

    Focusing of surface phonon-polaritons along conical and wedge polar nanostructures

    No full text
    International audienceFocusing of surface phonon-polaritons propagating toward the tip of a cone and the edge of a wedge is theoretically analyzed and compared. Based on Maxwell's equations, explicit expressions for the dispersion relations in each structure are determined and solved numerically for a propagation parameter driving the surface phonon-polariton energy density. For conical and wedge structures of SiO2, it is found that: (1) the cone (wedge) supports the polariton focusing only for aperture angles in the interval 18°–68° (21°–51°), and within the range of excitation frequencies from 32.1 THz (31.5 THz) to 33.9 THz (33.9 THz). In this frequency interval, the real part of the SiO2 permittivity is negative and the presence of polaritons is significant. (2) The polariton focusing efficiency of both the cone and wedge reaches its maximum values at the critical frequency fcr=33.6 THz and at different aperture angles of about αopt=45° and αopt=30°, respectively. (3) When the polaritons travel from 100 nm to 5 nm toward the tip of the cone with this optimum angle, their Poynting vector increases by a factor of 12, which is about four times larger than the corresponding one provided by the wedge and indicates that the cone is more efficient than the wedge for the focusing of surface phonon-polaritons

    Fresnel-like formulas for the reflection and transmission of surface phonon-polaritons at a dielectric interface

    No full text
    International audienceThe reflection and transmission coefficients of a surface phonon-polariton propagating along the surface of a thin film of SiO 2 and crossing the interface of two dielectric media are analytically determined. Based on the expansion of the electrical and magnetic fields in terms of normal modes, explicit expressions for the reflectivity and transmissivity of the radiation fields generated at the dielectric interface are also obtained. Symmetrical and simple Fresnel-like formulas are derived for nanofilms. For the dielectric interfaces of air/BaF2 and air/Al2O3 , it is shown that: (i) The polariton reflectivity (transmissivity) decreases (increases) as the film thickness increases, while its radiation equivalent follows the opposite behavior. (ii) In the polariton and radiation fields, the transmissivity is significantly more sensitive than the reflectivity to the changes on the permittivity mismatch of the dielectric interface. For a 143-nm-thick film, the polariton transmissivity (reflectivity) changes 13.2% (1.9%), when this mismatch varies by 50%. (iii) The reflectivity and transmissivity of the radiation fields are smaller than their polariton counterparts, which together account for around 82% of the total energy. The proposed formalism accurately fulfills the principle of conservation of energy for describing the reflection and transmission of both the polariton and radiation fields generated at a dielectric interface
    corecore